精通推荐算法26:行为序列建模之BST— Transformer建模用户行为序列

1 行为序列建模算法架构

BST背景

DIEN利用GRU循环神经网络来建模用户行为序列,捕获了用户行为的演变过程,以及行为间的相关关系,取得了非常不错的业务效果。但受制于GRU天然的串行计算方式,存在长程序列梯度弥散、串行计算影响速度等问题。在自然语言处理领域,Transformer自2017年提出以来,就席卷了整个行业,并在2018年BERT上线后大放异彩。2022

### 时间序列预测中的常用模型 #### ARIMA (AutoRegressive Integrated Moving Average) ARIMA 是一种经典的统计学方法,适用于线性和平稳的时间序列数据。该模型由三个部分组成:自回归(AR)、差分(I)和平滑移动平均(MA)。通过调整这三个参数 \(p\)、\(d\) 和 \(q\) 可以使模型适应不同的时间序列特性。 ```python from statsmodels.tsa.arima.model import ARIMA model = ARIMA(data, order=(5,1,0)) model_fit = model.fit() forecast = model_fit.forecast(steps=10) ``` #### Prophet Prophet 是 Facebook 开发的一种算法,专为商业应用设计,能够处理缺失的数据和异常值,并支持节假日效应建模。它基于加法或乘法模式来拟合趋势项、季节性成分和其他周期性的变化[^2]。 ```python from fbprophet import Prophet df['ds'] = df.index m = Prophet(yearly_seasonality=True) m.fit(df) future = m.make_future_dataframe(periods=365) forecast = m.predict(future) ``` #### XGBoost XGBoost 是梯度提升框架的一个实现,在许多结构化/表格型数据集上表现出色。对于时间序列预测而言,通常会先将时间特征转化为滞后变量或其他形式的输入特征再送入模型训练。 ```python import xgboost as xgb params = {'objective': 'reg:squarederror'} train_data = xgb.DMatrix(X_train, label=y_train) test_data = xgb.DMatrix(X_test) bst = xgb.train(params=params, dtrain=train_data) predictions = bst.predict(test_data) ``` #### Transformer-Based Models 近年来兴起的一类新架构——Transformer及其变体也逐渐被应用于时间序列分析领域。这类模型利用注意力机制捕捉长时间跨度内的依赖关系,尤其适合那些存在复杂长期依赖的任务[^3]。 ```python import torch.nn as nn class TimeSeriesTransformer(nn.Module): def __init__(self, input_dim, hidden_size, num_layers, output_dim): super(TimeSeriesTransformer, self).__init__() self.transformer_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=8) self.encoder = nn.TransformerEncoder(self.transformer_layer, num_layers=num_layers) self.fc_out = nn.Linear(hidden_size, output_dim) def forward(self, src): out = self.encoder(src) out = self.fc_out(out[-1]) return out ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢杨易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值