如何查看torch运行是否加载使用了cuda

 

在服务器上使用cuda,如果根目录已经安装,其实则不用自己再重新安装了

 
nvidia -smi可以查看到服务器根目录安装的cuda版本
 
使用torch.cuda.is_available() 可以知道torch跑深度模型的时候是否加载的根目录的cuda。

同时还可以查看cuda的版本:print(torch.version.cuda)

### 解决Mac上PyTorch未启用CUDA编译的问题 对于在Mac环境下遇到的“AssertionError: Torch not compiled with CUDA enabled”的错误,这表明当前使用的PyTorch版本并未开启对CUDA的支持。然而需要注意的是,在苹果M系列芯片发布之后,官方已经停止了对旧款Intel Mac提供完整的NVIDIA GPU支持[^1]。 #### 方案一:确认硬件兼容性 由于大多数新款Mac设备采用Apple Silicon架构(M1/M2),这些处理器并不直接支持传统的NVIDIA CUDA技术。因此,在尝试解决问题前应先核实所使用的Mac型号及其内置图形处理单元是否能够通过其他方式实现加速计算功能[^2]。 #### 方案二:自定义编译PyTorch 如果确实拥有可适配NVIDIA显卡的老款MacBook Pro (非Apple Silicon), 可考虑自行编译带有CUDA支持的PyTorch版本。此过程较为复杂且容易遭遇多种依赖项冲突等问题。建议按照社区文档逐步操作并留意可能出现的各种警告提示信息[^3]。 ```bash git clone --recursive https://github.com/pytorch/pytorch cd pytorch pip install -r requirements.txt export MACOSX_DEPLOYMENT_TARGET=10.9 python setup.py build develop ``` 请注意上述命令仅为示例用途;实际执行时需参照最新指南调整参数设置。 #### 方案三:安装缺失组件 有时该类问题也可能源于某些必要的Python扩展库未能正确加载所致。例如`typing_extensions`这类辅助工具的存在与否会影响程序正常运行。可以通过检查现有虚拟环境中是否存在此类模块,并酌情补充安装来排除潜在隐患[^4]: ```bash pip install typing_extensions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值