图神经网络池化方法

图神经网络池化方法


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

图池化操作根据其池化策略的差异,可细分为扁平图池化分层图池化两大类:

  1. 如下图(a)所示,扁平图池化(Flat Graph Pooling)技术通过一步操作对图中节点进行降维或聚合,直接获得整体图的表征。这一过程旨在快速提取出图的全局表示,适用于那些需要快速获得全局图表示的场景。
  2. 如下图(b)所示,分层图池化(Hierarchical Graph Pooling)则通过一个分阶段的策略来逐步简化图结构,即在图的每一层上通过减少节点的数量,逐步构建图的更高层次的表征。这种分层的方法允许模型在每一步中细致地捕获和保留图的重要结构信息,适合于需要深层次理解图结构特征的复杂任务。两种池化策略各有优势,选择哪一种依赖于特定任务的需求和目标。

在这里插入图片描述

一、扁平图池化

扁平图池化是一种图池化策略,其特点在于对图中的节点进行一次性的降维或聚合操作,从而简化图的整体结构并直接提取出图级别的特征表示。这种池化技术的核心在于直接从整个图中聚合信息,而非通过对图结构进行多层递归简化来实现。该方法的主要优势在于其简单直接的处理方式,能够在不引入额外计算复杂度的情况下,为下游任务提供有力的图级别特征。

对于给定的图 G = { A , X } \mathcal{G}=\{A,X\} G={ A,X},其中 A A A 是图的邻接矩阵,用于描述图中各个节点之间的连接情况; X X X是节点的特征矩阵,包含了与每个节点相关的属性或特征信息。扁平图池化可以定义为如下过程:
X ( l ) = GNN ( l ) ( G ) , h G = Pool f l a t ( X ( l ) ) , X^{(l)}=\text{GNN}^{(l)}(\mathcal{G}),\\ h_{\mathcal{G}}=\text{Pool}_{flat}(X^{(l)}), X(l)=GNN(l)(G),hG=Poolflat(X(l)),
这里GNN指的是任意图神经网络,经过 l l l 层的图神经网络之后,得到图中全部节点的特征表示矩阵 X ( l ) X^{(l)} X(l) h G h_{\mathcal{G}} hG表示经过图池化后得到的图最终表征向量, Pool f l a t \text{Pool}_{flat} Pool

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值