pytorch中,不同的kernel对不同的feature map进行卷积之后输出某一个channel对应的多个feature map如何得到一个channel的feature map...

实际上在卷积操作的时候,比如说,我某一层输出的feature map的size为4713*13

channel的数目为7,设经过某卷积层之后,网络输出的feature map的channel的数目为17

从7个channel到17个channel,假设卷积核的kernel为33,那么这个卷积层的参数就有17733,那么,对于一个具体的操作而言

比如说,输出feature map有17个通道,对于输出feature map的第一个通道,是由其他7个kernel对输入的7个channel的feature map进行卷积之后,综合得到?

那么问题来了,什么是综合呢?是将所有的元素相加然后求和还是将所有的元素相加求平均?

来看代码

显然,是简单粗暴的相加得到输出的feature map某一个channel的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值