共同第一作者,按字母顺序排列对应作者摘要大学生对生成式人工智能()的使用正在迅速增加,但关于学生使用及其影响因素的经验研究仍然有限。为弥补这一差距,我们调查了美国的名本科生和研究生,考察他们的使用情况以及其与人口统计变量和基于五大人格模型的性格特征(即外向性、宜人性、责任心、情绪稳定性和智力想象力)之间的关系。我们的研究结果表明:学术年份较高的学生更倾向于使用,并且更喜欢它而非传统资源。非母语英语使用者比母语使用者更愿意使用和采用。与白人相比,亚裔学生报告更高的使用率,感知更大的学术效益,并表现出更强的偏好。同样,黑人学生报告对其学业表现有更积极的影响。性格特征也在塑造的使用和看法方面发挥了重要作用。在控制人口统计因素后,我们发现性格仍然显著预测的使用和态度:责任心较高的学生使用较少。宜人性较高的学生认为对学业表现的影响较不积极,并对在学业工作中使用表达了更多的伦理关注。情绪稳定性较高的学生报告对学习有更积极的影响,并对学术用途的担忧较少。外向性较高的学生更倾向于选择而非传统资源。智力想象力较高的学生更倾向于选择传统资源。这些见解强调了大学提供个性化指导的必要性,以确保学生在学术追求中有效、合乎道德和平等地使用。关键词:生成式人工智能(),大学生,性格特征,学术引言大学生将生成式人工智能()用于各种学术目的,如学习、作业、论文、编程和考试,参与程度和接受程度各不相同。然而,需要实证证据来检查在学术工作中的使用和认知以及影响因素。在本研究中,我们调查了大学生,不仅了解他们如何将融入学术工作,还了解他们的使用与学生人口统计和性格特征之间的关联。我们的目标是全面理解推动或阻碍学术界采用的因素,以便政策制定者、教育工作者和技术开发者在制定指南、干预措施和工具时能够做出明智的决策,从而更好地支持学生的学业。的使用及影响因素据报道,大学生越来越多地将用于各种学术工作。研究已经考察了学生使用及其在各种学习任务中的有效性。一些研究表明,提高了学生的学习和成就,例如编程、数学学习、写作、英语学习和实验室任务。例如,等人调查了工程类英语作为第二语言的学生在英语课堂上使用的经历和看法。总体而言,学生们报告说极大地增强了学习者的词汇量、听力、口语、写作和阅读技能。另一方面,人们也对在学术工作中使用表示担忧(例如,内容的准确性),因为过度依赖可能会对学生批判性思维和解决问题的能力产生负面影响,对学术伦理构成威胁。学生人口统计与使用研究人员探讨了使用与各种因素之间的关联。一项针对五个国家的研究发现,学生使用的态度和使用情况与其感知的易用性、实用性、对技术的积极态度、社会影响、行为和认知元素、低焦虑感和最小的感知风险呈正相关。他们建议,高等教育中的采用政策应根据个体情况进行定制,考虑学生态度的变化。等人()研究了社会经济地位()和数字与人工智能素养与大学生使用类型之间的关联。他们通过七个问题测量学生的,询问是否为第一代大学生、学生贷款的比例、父母教育水平、估计的家庭收入、感知的家庭社会阶层和社会经济地位。他们发现,来自较高社会经济地位()家庭的大学生更频繁地使用。他们建议未来的研究应调查使用中的性别和种族民族差异。学生的学术水平也可能影响的使用,高年级学生更频繁地使用它。调查显示,大约的高中生使用工具,而超过一半的大学生使用工具,超过了高等教育教师的比例。性格特征对使用的影响除了人口统计信息外,研究还考察了性格对使用的影响,因为性格被认为是影响个人认知、情感和行为行动的最根本的心理特征之一。五大人格特质在心理学中被广泛认可为描述人类性格和理解人类行为的框架,涵盖五个广泛的领域(例如):外向性——外向、精力充沛和社交。宜人性——富有同情心、合作、乐于助人、同理心和信任。责任心——有组织、负责任、自律和目标导向。情绪稳定性——冷静、安全,没有持续的负面情绪、痛苦和情绪波动。智力想象力——富有想象力、创造力、好奇心,并对非常规思想和价值观持开放态度。等人()运用五大人格特质研究了学生使用与其性格之间的关系。他们发现,对学习持开放态度的人与使用之间具有高度相关性。相比之下,神经质和宜人性等特质对学生对有用性的认知产生了负面影响。相反,()发现,宜人性对学生对的认知产生了积极影响,这反过来又影响了学生对的接受度。研究人员还考察了人口统计信息和性格对的综合影响。例如,等人()分析了在线招募的成年人中人口统计信息、性格和对的态度之间的关系。在控制人口统计信息(年龄、性别、教育水平)后,他们发现更高的计算机使用频率和对的更多了解是积极态度的重要正向预测因子,而学习焦虑也是积极态度的重要负向预测因子。宜人性显著预测了对的负面态度。我们在以下方面进一步研究了使用和影响因素:首先,鉴于现有文献中性格对学生使用的不一致影响(例如宜人性的影响),我们进一步探讨了性格对使用的矛盾影响。其次,我们从多样化的大学生群体中招募参与者,包括用户和非用户,以及本科生和研究生。相比之下,等人()仅招募了用户,排除了不使用该平台的人。则在线招募了成年参与者。第三,我们考察了使用和认知与大学生特定的人口统计特征之间的关联,如年级、专业和语言状态——这是一个尚未充分研究的领域——以及五大人格特质。本研究旨在回答以下研究问题:大学生如何使用生成式?他们的人口统计信息——特别是性别、种族、语言状态和年级——与使用有何关联?在控制重要人口统计因素后,学生的性格特征如何与他们对的使用和认知相关?通过回答这些问题,本研究提供了关于个体差异在使用和认知中作用的宝贵见解,使教育者能够更好地引导学生在高等教育中有效地、适当地使用。方法参与者共有名来自美国一所公立大学的学生在三天内于大学计算机实验室参与了这项研究。每位学生签署同意书后,在实验室通过完成了三次调查,并因花费的时间每人获得了美元的报酬。参与者代表了多样的性别、种族、学术专业、年级和母语英语使用者状态(附录)。工具我们开发了五个项目来检查学生的人口统计信息(附录)和十五个项目来测量学生对的使用和认知(附录)。为了测量五大人格特质,我们采用了包含个项目的国际人格项目池(),每个特质由个项目测量。这种工具被认为是测量五大人格特质最可靠的工具,其效度也已得到检验和支持。在反转任何反向陈述的得分后,我们根据数据计算了测量每个特质的项目的系数。结果显示所有系数均高于(表)。我们进一步创建了五个复合分数来表示五大人格特质,通过平均测量每个构念的所有项目,并在分析中使用这些复合分数。表五大人格特质的描述性统计特质平均值标准差系数外向性宜人性情绪稳定性责任心智力想象力分析与结果工具使用结果显示,总计的学生偶尔、经常或非常频繁地使用;约的学生每周使用超过一小时;学生使用的目的多种多样;约的学生认为在解决问题方面最有用;最常见的问题是过度依赖(),其次是生成信息的准确性(),第三大问题是伦理问题();约的学生更喜欢使用工具而非传统资源来获取学术帮助,而的学生更喜欢传统资源。大约的学生是从朋友或同学那里了解到的,而只有的学生是从老师或学术资源中了解到的。虽然的学生从老师导师那里得到了如何有效使用工具的指导,但的学生没有报告收到指导。详细统计数据见附录和。主成分分析与旋转揭示了使用的三个维度:学术用途的使用,包括频率、持续时间、小组使用、同伴对使用的影响以及未来使用的可能性;对学习和表现的影响;使用的伦理问题。这三个维度解释了原始方差的。最后,显示学生更喜欢使用而非传统资源来获取学术帮助的程度是一个独立的构念。测量学生学术用途使用的五个项目具有很高的内部一致性,。因此,我们计算了复合分数,即,并在进一步分析中使用它。然而,学习和表现的影响的内部一致性相当低(系数)。因此,我们在随后的分析中保留了这两个变量。基于心理测量验证,我们在接下来的分析中重点关注五个变量:、、、和。表报告了这五个变量的均值。附录包括更多细节,包括每个变量的标准差。表不同组别的变量均值变量值性别男性女性种族亚裔太平洋岛民西班牙裔黑人白人多种族专业农业商业工程健康科学其他年级新生大二大三大四硕士博士母语是使用者否总计注意:样本量少于的小群体未包含在此表中,因为结果不够稳定。总体而言,学生报告的使用评分显著高于对其伦理问题的关注,,;学生认为对学业表现的影响比对学习的影响更积极,,。人口统计因素为了检查不同学生群体在使用和对的态度上是否存在差异,我们进行了。结果显示,总体而言,男女生在五个维度上没有差异。不同专业的学生也没有显著差异。不同年级的学生在反应上有显著差异(图),。单变量显示,总体而言,高年级学生比低年级学生更倾向于使用,感知到对其学习和学业表现的积极影响,并更频繁地利用。然而,不同年级的学生在伦理问题上的反应没有差异。不同种族群体的学生在所有维度上的反应也存在差异,除了伦理问题,。单变量显示,亚裔学生使用显著多于白人和黑人学生,认为对其学业表现的影响比白人学生更积极,并比白人学生更偏好而非传统学习资源。非母语英语使用者与母语英语使用者的反应显著不同(图),。单变量显示,非母语英语使用者显著比母语英语使用者更多地使用,感知到其对学业表现的更积极影响,并更偏好而非传统资源的帮助。我们进行了多次回归,以不同的反应作为因变量,年级、语言状态(哑变量)和种族(哑变量,以白人为参考组)作为预测变量,以便进一步检查在控制其他人口统计信息后学生对反应与人口统计信息之间的关联。结果显示与相似模式:使用:模型显著预测使用,²。年级越高β,非母语英语使用者β,以及亚裔学生β使用更多。对学业表现的影响:模型显著预测对学业表现的积极影响:模型显著预测对学业表现的影响,²。年级越高β,亚裔学生β和黑人学生β报告对学业表现的更积极影响。偏好胜过传统资源:模型显著预测学生偏好使用胜过传统资源进行学术帮助的程度,²。年级越高β和亚裔学生β更偏好。模型不显著预测对学习的影响和伦理问题。图学生的反应与年级水平对比图学生的反应与是否为母语英语使用者对比。性格特征相关系数分析(表)显示,情绪稳定性与对表现、学习和偏好的积极影响呈正相关,与伦理问题呈负相关。外向性也与偏好呈正相关。相反,责任心和智力想象力与使用呈负相关,宜人性与伦理问题呈正相关。表使用与性格特征的相关系数对表现的影响对学习的影响偏好伦理问题外向性宜人性情绪稳定性责任心智力想象力相关系数在水平上显著(双尾)。相关系数在水平上显著(双尾)。五大特质与变量的相关系数加粗显示。为进一步检查在控制学生人口统计信息后,变量与性格特征之间的关联,特别是学生的年级和是否为母语英语使用者,我们进行了逐步回归。我们没有将种族纳入逐步回归模型,因为它们与语言状态和多个性格特征显著相关。回归结果显示五大性格特征在控制人口统计信息后显著贡献于变量的预测:使用(Δ²),对表现的影响(Δ²),对学习的影响(Δ²),偏好(Δ²),伦理问题(Δ²),使用:个别而言,那些责任心更高的人报告更低的使用,β。对学业表现的影响:那些外向性更高的人报告对其学业表现的更积极影响,β,而那些宜人性更高的人报告对其学业表现的更低积极影响,β。对学习体验的影响:那些情绪稳定性更高的人报告对学习体验的更积极影响,β。偏好:那些外向性更高的人更偏好而非传统资源进行学术帮助,β;而那些智力想象力更高的人更偏好传统资源而非,β。伦理问题:那些宜人性更高的人更可能对有更多伦理问题,β,而那些外向性更高的人(β)和情绪稳定性更高的人(β)对使用的伦理问题较少。
5 讨论
调查分析结果显示,大学生广泛使用GAI用于各种目的。然而,他们也表达了主要涉及信息准确性和过度依赖GAI的担忧。尽管有这些担忧,学生的整体GAI使用仍超过他们对其使用的担忧。此外,学生认为GAI对其学业表现的积极影响大于对其学习的积极影响,这与他们对过度依赖该工具的担忧一致。
我们比较了不同学生子群体的GAI使用情况。学生在性别或学术专业方面没有显示出GAI使用的显著差异。然而,年级较高的学生更倾向于接受GAI,而不是年级较低的学生。这一趋势可能是由于多种因素:(a) GAI工具,如ChatGPT,在K-12环境中往往受到限制,而在高等教育中,尤其是对于研究生,限制较少。(b) 年级较高的学生拥有更多的知识内容,因此更擅长利用GAI;例如,他们可以提供符合预期结果的提示。相比之下,年轻的学生可能缺乏必要的理解来制定有用的提示,以引导GAI生成有用的信息。例如,那些充分掌握编程语言的人比编程知识有限的人更有可能利用和受益于GAI进行编码。
母语和非母语英语使用者之间的比较显示,非母语英语使用者显著比母语英语使用者更频繁地使用GAI。这一趋势可能源于非母语使用者在以英语为主的学术环境中经常遇到的语言障碍,这很可能促使他们更多地依赖GAI。例如,非母语英语使用者可能比母语英语使用者更频繁地使用GAI来校对他们的论文或生成草稿。有趣的是,亚裔学生展示了最高的GAI采纳水平,而亚裔和黑人学生报告了比白人同学更积极的GAI对其学业表现的影响。尽管亚裔学生中非母语英语使用者的比例高于白人学生,但在考虑语言能力后,亚裔和白人学生之间GAI使用的差异仍然显著。
通过五大性格特征测量的性格特征的检查表明,即使在控制人口统计信息后,学生的性格特征仍然显著预测他们的GAI使用和认知。外向性较高的学生报告了对表现的更积极影响、更多的GAI偏好和对GAI学术辅助的更少伦理问题,这可能是因为他们倾向于寻求外部互动和协作学习。
高度负责的学生不太可能使用GAI。我们怀疑他们对社会责任的高度意识和避免抄袭或过度依赖GAI的愿望可能使他们在课程工作中更加谨慎地使用GAI。
宜人性较高的学生并未感知到GAI对其学业表现有益。相反,他们对使用GAI进行学业工作的伦理影响表达了更大的担忧。先前的研究对宜人性与GAI使用之间的关系报告了混合的结果,观察到了正面[5]和负面[6]效应。我们怀疑宜人性测量的差异是由于学生接触到的信息不同。如果学生接收到更多反对使用GAI并强调与其使用相关的担忧的信息,那么宜人性较高的学生可能会更少使用GAI并形成负面态度。另一方面,如果鼓励学生使用GAI,那么宜人性较高的学生更有可能采用它。鉴于不同大学对GAI使用的政策不同,教师对GAI使用的态度也不同,因此宜人性较高的学生在不同情境下可能会受到不同的影响。此外,GAI的输出容易出错,通常需要多次提示和迭代。高度宜人的学生可能更容易接受和使用GAI生成的错误信息,之后才意识到其不准确,这可能导致对GAI的不信任。
最后,高度外向和情绪稳定的学生产生了更少的关于使用GAI进行学术工作的伦理问题。那些外向性较高的人更偏好GAI而非传统资源,而智力/想象力较高的学生在学术帮助中更偏好传统资源而非GAI。
总的来说,大学生在GAI使用和态度上有所不同。人口统计信息和性格特征都解释了这些差异。GAI不仅有潜力提高学业表现,还有潜力改善学习。学生似乎低估了GAI对学习的好处,与报告的GAI对学业表现的好处相比。
值得注意的是,大量学生报告没有从导师或机构人物那里获得关于GAI使用的指导。这一差距突显了需要引导学生有效地和恰当地使用GAI,以便GAI本质上能改善他们的学习。
缺乏指导和规范也可能导致公平性问题,因为学生对GAI好处和担忧的看法不同,进而导致他们对GAI的使用不同。机构指导应促进AI的伦理使用,确保学生能够有效地利用GAI增强学习,而不是因为不确定性或伦理担忧而避免使用,这反映了他们的人口统计和性格差异。
6 结论
我们的研究与先前的研究一致,强调了学生在学术实践中整合GAI的各种方式,其中总结笔记、主题修订和创造性头脑风暴是最常见的用途。研究结果表明,GAI作为一种有价值的工具,可以增强学生的学习体验,特别是在解决问题、编码和技术写作等领域。然而,AI在学生中的采用并不统一;个人的人口统计信息和性格特征影响了学生如何使用或感知GAI工具。
人口统计因素,如年级和种族,也与大学生使用AI有关。年级越高,学生越可能使用和偏好GAI。非母语英语使用者比母语英语使用者更频繁地使用GAI,可能是因为GAI在英语写作方面的强大功能。亚裔和黑人学生更可能报告GAI对其学业表现的积极影响。
研究结果还强调,学生的性格在塑造其AI使用模式方面起着关键作用。外向性和情绪稳定性较高的学生更可能将ChatGPT作为学术支持的来源。相反,责任心较高的学生使用GAI较少,可能认为AI与其纪律性的学习习惯或道德标准不兼容。类似地,宜人性较高的学生对AI在学术中的角色表现出更高的伦理担忧,可能反映了教师对使用GAI的整体反对以及他们强烈的社会期望。
本研究可以在多个方向上扩展:首先,本研究仅限于一次性横断面调查数据。未来的研究可以收集学生在学术工作中使用GAI的纵向数据。调查学生对GAI的怀疑或接受是否随时间演变并响应教师的指导,以及这一过程如何与他们的性格特征相互作用,将为学生参与GAI的动力提供更深的洞察。此外,未来的研究应采访学生以发现GAI使用与影响因素之间的统计关系背后的机制。最后,需要实证数据来研究如何帮助学生使用GAI来改善学习,而不仅仅是学业表现。
参考文献
- Abdaljaleel, M., Barakat, M., Alsanafi, M., Salim, N.A., Abazid, H., Malaeb, D., Mohammed, A.H., Hassan, B.A., Wayyes, A.M., Farhan, S.S., Khatib, S.E., Rahal, M., Sahban, A., Abdelaziz, D.H., Mansour, N.O., AlZayer, R., Khalil, R., Fekih-Romdhane, F., Hallit, R., Hallit, S., Sallam, M.: 多国研究影响大学生态度和使用ChatGPT的因素。Scientific Reports. 14, (2024).
-
- Brender, J., El-Hamamsy, L., Mondada, F., Engin Bumbacher: 谁在帮助谁?当学生在实践实验室环节中使用ChatGPT。Lecture notes in computer science. 14829, 235-249 (2024).
-
- Camps, J., Stouten, J., Euwema, M.: 上司的五大人格特质与员工对虐待性监督的体验之间的关系。Frontiers in Psychology. 7, (2016).
-
- Fardian, D., Suryadi, D., Prabawanto, S., Jupri, A.: 将Chat-GPT整合到课堂中:高等教育线性代数学习的研究。International Journal of Information and Education Technology. 15, 732-751 (2025).
-
- Faruk, L., Rohan, R., Unhawa Ninrutsirikun, Pal, D.: 大学生从心理技术视角接受和使用生成式AI(ChatGPT)。第13届国际信息进步会议。1-8 (2023).
-
- Filippi, S., Motyl, B.: 开发一种工具评估工程学生对生成式AI的感知对大学课程的影响,基于性格、设计团队中的感知角色和课程参与度。Multimodal Technologies and Interaction. 8, 84 (2024).
-
- Ghimire, A., Edwards, J.: 编码与AI:像ChatGPT这样的工具如何被基础编程课程中的学生使用。Lecture notes in computer science. 14830, 259-267 (2024).
-
- Guhan, M., Suganthan Chandramohan: 分析Chatgpt在ESL学习者英语习得中的作用的研究。Bodhi International Journal of Research in Humanities, Arts and Science. 8, 75-84 (2023). https://doi.org/10.13140/RG.2.2.28252.56961.
-
- Hasanein, A.M., Sobaih, A.E.E.: ChatGPT在高等教育中的使用驱动因素和后果:关键利益相关者视角。European Journal of Investigation in Health, Psychology and Education. 13, 2599-2614 (2023).
10.10. IPIP协作组:管理IPIP测量,附50项示例问卷,https://ipip.ori.org/new_ipip-50-item-scale.htm.
- Hasanein, A.M., Sobaih, A.E.E.: ChatGPT在高等教育中的使用驱动因素和后果:关键利益相关者视角。European Journal of Investigation in Health, Psychology and Education. 13, 2599-2614 (2023).
- Jelson, A., Manesh, D., Jang, A., Dunlap, D., Lee, S.W.: 实证研究了解学生如何使用ChatGPT撰写论文。arXiv预印本arXiv:2501.10551, (2025)
-
- Johnson, J.A.: 使用120项公共领域量表测量五大人格模型的三十个方面:IPIP-NEO-120的发展。Journal of Research in Personality 51, 78-89. (2014).
- Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., Kaya, M.: 性格特征、AI焦虑和人口统计因素在对人工智能态度中的作用。International Journal of Human-Computer Interaction 40(2), 497-514 (2022).
-
- KTVZ主页:有多少高中生和大学生正在使用AI工具?https://ktvz.com/stacker-money/2024/02/29/how-many-high-school-and-college-students-are-using-ai-tools.
-
- McCrae, R.R., John, O.P.: 五大人格模型及其应用介绍。Journal of Personality 60(2), 175-215 (1992).
-
- McCrae, R. R., Costa, P. T.: 人格的五因子理论。由O. P. John, R. W. Robins, & L. A. Pervin(编),《人格手册:理论与研究》(第3版),第159-181页。纽约:The Guilford Press (2008).
-
- Mount, M.K., Barrick, M.R., Stewart, G.L.: 五大人格模型与涉及人际互动工作的绩效。Human Performance 11(2-3), 145-165 (2011).
-
- Weng, X., Xia, Q., Ahmad, Z., Chiu, T.K.F.: 高等教育中生成式AI的评估与学习成果:当前研究现状与趋势的范围审查。Australasian Journal of Educational Technology 40(6), 37-55 (2024).
-
- Ypofanti, M., Zisi, V., Zourbanos, N., Mouchtouri, B., Tzanne, P., Theodorakis, Y., Lyrakos, G.: 希腊人群体国际人格项目池大五人格问卷的心理测量特性。Health Psychology Research 3(2):2206 (2015).
-
- Zhai, X. ChatGPT用户体验:对教育的启示。(2022).
-
- Zhang, C. (Xinyi), Rice, R.E., Wang, L.H.: 大学生的信息素养、ChatGPT活动、教育成果和信任——从数字鸿沟视角出发。New Media & Society. (2024).
- N. Deng et al.
参考论文:https://arxiv.org/pdf/2505.02863