多模态情感分类:文本、音频和图像特征的提取与融合(老友记素材),matlab中Resnet50,vgg16安装

前言

多模态情感分类是一项综合利用文本、音频和图像信息预测情感类别的任务。这种方法试图结合多种数据模态的特性,提供更加鲁棒的情感识别能力。在这篇博客中,我们将分享一段多模态情感分类的完整代码,结合关键概念、特征提取方法以及模型训练与评估的具体步骤,带领大家深入理解多模态分类背后的原理。

什么是多模态情感分类?

多模态情感分类是一种机器学习任务,它通过处理和融合多种数据模态(如文本、音频、图像),预测样本的情感类别。典型的应用场景包括:

文本情感分析:分析语句、评论的情感倾向(正面、中性或负面)。
音频情感分析:从语音数据中提取情感信息(愤怒、高兴、悲伤等)。
视觉情感分析:通过人脸表情或肢体动作识别情感。
融合多种模态数据的优势在于,它能捕捉单一模态中无法体现的情感特征。例如,在一段语音中,“高兴”的情感可能表现在语气(音频)中,而语音的语义信息(文本)则表明“愤怒”。结合两者可以显著提升分类的准确性。

核心步骤与实现

实现多模态情感分类的步骤包括:

文本特征提取(使用 TF-IDF)。
音频特征提取(使用 MFCC)。
图像特征提取(使用 ResNet50)。
多模态特征的融合。
训练分类模型并评估其性能。
以下将逐步展示代码并解释每一步的实现原理

文本特征提取

在文本处理中,常用的方法包括 Bag of Words 和 TF-IDF。在这段代码中,我们使用 TF-IDF 提取文本特征。

TF-IDF 的公式:
TF-IDF ( t , d ) = TF ( t , d ) × IDF ( t ) \text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t) TF-IDF(t,d)=TF(t,d)×IDF(t)
其中:
TF ( t , d ) : \text{TF}(t,d): TF(t,d): t t t在文档中 d d d中的出现频率。
IDF ( t ) : \text{IDF}(t): IDF(t): t t t的逆文档概率,用公式表示为:
IDF ( t ) = log ⁡ ( N + 1 DF ( t ) + 1 ) + 1 \text{IDF}(t) = \log \left( \frac{N + 1}{\text{DF}(t) + 1} \right) + 1 IDF(t)=log(DF(t)+1N+1)+1
N N N为文档总数, D F ( t ) {DF}(t) DF(t)表示包含词 t t t的文档数量
核心代码如下:

% 创建词袋模型并提取 TF-IDF 特征(训练集)
bag = bagOfWords(tokenizedDocument(textDataTrain));
tfidfTrain = tfidf(bag); % 训练集 TF-IDF 特征

% 计算 IDF 权重


% 将测试集编码为词频特征
encodedTest = encode(bag, tokenizedDocument(textDataTest));

% 手动应用 IDF 权重到测试集


% 保存 TF-IDF 特征
textFeaturesTrain = tfidfTrain;
textFeaturesTest = tfidfTest;

音频特征提取

音频特征提取使用了 MFCC(Mel频率倒谱系数),它是语音信号处理中一种常用的特征,用于捕捉语音的频谱包络。

MFCC 的关键步骤:

通过快速傅里叶变换(FFT)计算频谱。
将频谱映射到 Mel 频率尺度。
对 Mel 频谱取对数。
进行离散余弦变换(DCT)获得系数
核心代码如下:

audioFolder = 'emoVideo';
audioFiles = dir(fullfile(audioFolder, '*.wav'));
numFeatures = 40; % 固定 MFCC 特征的维度(系数数量)

% 提取音频特征
for i = 1:length(audioFiles)

    mfccFeatures = mfcc(audio, fs, 'NumCoeffs', numFeatures); % 提取固定维度的 MFCC
    mfccMean = mean(mfccFeatures, 1); % 计算列均值

    % 确保维度一致:截断或补零
    if size(mfccMean, 2) < numFeatures
        mfccMean = [mfccMean, zeros(1, numFeatures - size(mfccMean, 2))];
    elseif size(mfccMean, 2) > numFeatures
        mfccMean = mfccMean(1:numFeatures);
    end

    % 拼接特征
    if trainIdx(i)

    else
        audioFeaturesTest = [audioFeaturesTest; mfccMean];
    end
end

% 标准化音频特征
audioFeaturesTrain = normalize(audioFeaturesTrain);
audioFeaturesTest = normalize(audioFeaturesTest);

图像特征提取

图像特征提取使用了 ResNet50,它是一种深度卷积神经网络,预训练在 ImageNet 数据集上。这里提取的是 avg_pool 层的特征
核心代码如下:

imageFolder = 'emoImage';
imageFiles = dir(fullfile(imageFolder, '*.png'));
net = resnet50; % 使用 ResNet50 提取特征
layer = 'avg_pool';

% 提取图像特征
for i = 1:length(imageFiles)
    img = imread(fullfile(imageFolder, imageFiles(i).name));
    img = imresize(img, [224, 224]);
    feature = activations(net, img, layer, 'OutputAs', 'rows');
    
    if trainIdx(i)
        imageFeaturesTrain = [imageFeaturesTrain; feature];
    else
        imageFeaturesTest = [imageFeaturesTest; feature];
    end
end

多模态特征融合

将文本、音频和图像特征统一为 double 类型,并按样本数量对齐后拼接。
核心代码如下:

% 对齐训练集特征的大小
textFeaturesTrain = textFeaturesTrain(1:numSamplesTrain, :);
audioFeaturesTrain = audioFeaturesTrain(1:numSamplesTrain, :);
imageFeaturesTrain = imageFeaturesTrain(1:numSamplesTrain, :);

% 拼接训练集特征
combinedFeaturesTrain = [textFeaturesTrain, audioFeaturesTrain, imageFeaturesTrain];

% 对齐测试集特征的大小
textFeaturesTest = textFeaturesTest(1:numSamplesTest, :);
audioFeaturesTest = audioFeaturesTest(1:numSamplesTest, :);
imageFeaturesTest = imageFeaturesTest(1:numSamplesTest, :);

% 拼接测试集特征
combinedFeaturesTest = [textFeaturesTest, audioFeaturesTest, imageFeaturesTest];

模型训练与评估

使用 Random Forest 进行分类,并计算分类的准确率和 F1-Score。
核心代码如下:

% 训练 Random Forest 模型
RFModel = fitcensemble(combinedFeaturesTrain, emotionLabelsTrain, 'Method', 'Bag', 'NumLearningCycles', 100);

% 预测测试集
YPred = predict(RFModel, combinedFeaturesTest);

% 计算准确率
accuracy = sum(YPred == emotionLabelsTest) / length(emotionLabelsTest);
fprintf('分类准确率: %.2f%%\n', accuracy * 100);

% 计算 F1-Score
confMat = confusionmat(emotionLabelsTest, YPred);
f1Score = 2 * (precision .* recall) ./ (precision + recall);
fprintf('平均 F1-Score: %.2f%%\n', nanmean(f1Score) * 100);

效果展示

在这里插入图片描述

提示

鉴于大家的matlab基本都是白嫖,为了大家方便安装Resnet50,vgg16,本文资源提供了安装文件,下载之后j解压即可进行安装
在这里插入图片描述

老友记图片视频素材下载

由于素材内容高达12GB,平台不允许直接上传,请访问百度网盘
链接:https://pan.baidu.com/s/13AQDU_wHeHm_6WucSKa8JQ
提取码:8010
–来自百度网盘超级会员V5的分享

##完整代码获取
关注下方卡片公众号,回复"多模态情感分类"获取完整代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值