深度强化学习系列【1】- 强化学习的背景、基础理论等

本文介绍了深度强化学习的背景,从生物神经元数量到Alpha Go的突破,再到Waymo的无人驾驶项目,阐述AI的发展。同时,概述了AI的主要类别,如符号主义、连接主义和行为主义,并提出在解决连续、离散空间的序列决策优化问题中,强化学习的应用。最后探讨了强化学习在多智能体系统中的重要性。
摘要由CSDN通过智能技术生成

引言:

这篇博客主要是学习清华大学车辆学院 李升波老师(Shengbo Eben Li)的PPT课件的一些心得体会。


1. 深度强化学习的背景、发展与理论变迁

1.1 序

Out of TAO, One is born;
One produces Two;
Two produces Three;
Out of Three, the Universe is created.
by Lao Tzu
老子的一生二,二生三,三生万物 可以说是世界进化发展史的一个描述,当然这里面似乎缺乏适者生存的进化论思想。这部分没有听过李升波老师的演讲,所以还不明白智能和这块怎么牵扯到一块。。。

顺着这个话题,我们简要讨论下生物界神经元的数目。水母(Jellyfish)只有5x10E3的神经元,而果蝇只有5.6x10E3 的神经元。而人类有86亿神经元。当然这个神经元体量的比较可能并不合理,因为近

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robo-网络矿产提炼工

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值