Pytorch 多GPU分布式数据并行(DistributedDataParallel)

DistributedDataParallel, 多进程,支持数据并行、模型并行,支持单机多卡、多机多卡;进程间仅传递参数,运行效率高于DataParallel
下面是一个文本分类的完整示例

import os
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from datasets import Dataset
from torch.utils.data import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import BertTokenizer, BertForSequenceClassification
from torch.utils.data import DistributedSampler
 
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '5678'

# 加载数据
def create_dataset(data_file, tokenizer):
    print('create dataset')
    with open(data_file, 'r', encoding='utf-8') as f:
        data = [_.strip().split('\t') for _ in f.readlines()]
    x = [_[0] for _ in data]
    y = [int(_[1]) for _ in data]
    data_dict = {
   'text': x, 'label': y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值