大数据架构简述(三):流处理、批处理、交互式查询

我们将大数据处理按处理时间的跨度要求分为以下几类

    基于实时数据流的处理,通常的时间跨度在数百毫秒到数秒之间

    基于历史数据的交互式查询,通常时间跨度在数十秒到数分钟之间

    复杂的批量数据处理,通常的时间跨度在几分钟到数小时之间

1.流处理

流是一种数据传送技术,它把客户端数据变成一个稳定的流。正是由于数据传送呈现连续不停的形态,所以流引擎需要连续不断处理数据

流处理的主要应用场景:金融领域和电信领域

1.1 Stom

Storm是一个免费开源、分布式、高容错的实时计算系统。

Storm主要分为两种组件Nimbus和Supervisor。这两种组件都是快速失败的,没有状态。任务状态和心跳信息等都保存在Zookeeper上的,提交的代码资源都在本地机器的硬盘上。
1)Nimbus负责在集群里面发送代码,分配工作给机器,并且监控状态。全局只有一个。
2)Supervisor会监听分配给它那台机器的工作,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值