伯努利采样&&泊松采样

softmax,gumbel部分参考了https://blog.csdn.net/jackytintin/article/details/79364490

1. 伯努利分布

伯努利分布只有0,1状态,例如投硬币,投一次正面朝上的概率服从伯努利分布。多次做伯努利试验就称为n重伯努利试验。伯努利分布是二项分布在n=1时的特例

2. 二项分布

投掷n次硬币,正面朝上的次数为k概率服从二项分布

3. 多项分布

多项分布是二项分布的特例
举例说明:在一座城市中,若将人口按照年龄分成n组,这n组人在总人口中各占的比例分别为p1,p2,…, pn,今从城市中随机抽N个人,用 (X1,X2,…,Xn) 分别表示这N个人中每个年龄组的人数,则X=(X1,X2,…,Xn)服从多项分布。
例如一个6个数的骰子,每个的概率(p1,p2,p3,p4,p5,p6),投掷N次后,出现1=n1,2=n2,3=n3,4=n4,5=n5,6=n6点的次数的概率服从多项分布,对于二项分布是可以把骰子换成硬币

4. 伯努利采样

假设有N个位置,每个位置的分布都是服从 π π 的伯努利分布,那么从这N个位置中采样的话,最后采样的点数会是0~N,第k个位置被选中的概率为 P(Ik=1)=π P ( I k = 1 ) = π
这里写图片描述

5. 泊松采样

假设有N个位置,每个位置的分布都是服从 πk π k 的伯努利分布,那么从这N个位置中采样的话,最后采样的点数会是0~N,第k个位置被选中的概率为 P(Ik=1)=πk P ( I k = 1 ) = π k ,每个位置的概率分布一定是不同的
这里写图片描述

6. 多项分布采样

假设有N个位置,每个位置的分布都是多项分布(p1,p2,…,pm),那么从这N个位置中采样的话,每一个位置选出来的是1~m中的其中一个

7. 反函数法求随机数

8. Softmax sampling && Gumbel max sampling

主要参考这篇博客
对于泊松采样,对于N每个位置的每一个位置按照概率采样都可以用softmax采样,当然也可以用Gumbel max采样。二者的介绍在那篇博客里已经有了,Gumbel max采样其实等同于softmax采样,将那篇博客的代码整理了一下,非常感谢原作者,如下

import numpy as np
import matplotlib.pyplot as plt
def inv_gumbel_cdf(y, mu=0, beta=1, eps=1e-20):
    return mu - beta * np.log(-np.log(y + eps))
def sample_gumbel(shape):
    p = np.random.random(shape)
    return inv_gumbel_cdf(p)
def softmax(logits):
    max_value = np.max(logits)
    exp = np.exp(logits - max_value)
    exp_sum = np.sum(exp)
    dist = exp / exp_sum
    return dist

def sample_with_softmax(logits, size):
    pros = softmax(logits)
    return np.random.choice(len(logits), size, p=pros)


def sample_with_gumbel_noise(logits, size):
    noise = sample_gumbel((size, len(logits)))
    return np.argmax(logits + noise, axis=1)
np.random.seed(1111)    
logits = (np.random.random(10) - 0.5) * 2  # (-1, 1)

pop = 100000
softmax_samples = sample_with_softmax(logits, pop)
gumbel_samples = sample_with_gumbel_noise(logits, pop)

plt.subplot(1, 2, 1)
plt.hist(softmax_samples)

plt.subplot(1, 2, 2)
plt.hist(gumbel_samples)
plt.show()

这里写图片描述
只要随机数种子设置的一样,每次出来的结果差不多都是一样的, softmax采样和gumbel采样是等价的。为什么等价作者也给出了链接https://hips.seas.harvard.edu/blog/2013/04/06/the-gumbel-max-trick-for-discrete-distributions/

但是很明显上面的都是不可导的,首先softmax采样采用choice函数不可导,gumbel max采用argmax也是不可导的, 将gumbel max的argmax可以用softmax来逼近,从而可导。

def generalized_softmax(logits, temperature=1):
    logits = logits / temperature
    return softmax(logits)

temperture越大,整个的采样越平滑,类似于均匀采样了,越小,越类似于one-hot向量,越接近于logtis的分布,实则是一个多项分布。

VAE中为了让整个网络可导,他是怎么做的呢?
https://blog.csdn.net/jackytintin/article/details/53641885
产生分布服从 (μ,σ) ( μ , σ ) 的概率分布的采样是不可导的过程,但是如果用N(0,1)产生随机数 β β ,那么 z=z0σ+μ z = z 0 ∗ σ + μ , z0N(0,1) z 0 ∼ N ( 0 , 1 ) ,这个时候z是可导的,这就是reparameterition trick。

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值