泊松噪声是一种离散型随机噪声,其统计特性符合泊松分布。在图像处理领域,泊松分布噪声通常用来描述光子计数过程中产生的随机波动,光子到达检测器的过程可以视为一个泊松过程。
泊松分布
泊松分布(Poisson Distribution)是概率论和统计学中一种常见的离散概率分布,用于描述在固定时间或空间区间内,某事件发生次数的概率。如果某个事件在单位时间内发生的平均次数为
λ
\lambda
λ,则该事件发生
k
k
k次的概率可以通过以下公式计算:
P
(
k
;
λ
)
=
λ
k
e
−
λ
k
!
P(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}
P(k;λ)=k!λke−λ
其中,
k
k
k是事件发生的次数(非负整数),
λ
\lambda
λ是单位时间内(或单位面积、体积等)事件的平均发生次数,
e
e
e是自然对数的底(约等于 2.71828),
k
!
k!
k!表示
k
k
k的阶乘。
参数 λ \lambda λ的意义
- λ \lambda λ是泊松分布的唯一参数,表示在给定的时间或空间区间内,事件的平均发生次数。
- λ \lambda λ也同时是泊松分布的期望值和方差,即若随机变量 X X X服从参数为 λ \lambda λ的泊松分布,则有 E [ X ] = λ E[X] = \lambda E[X]=λ和 V a r ( X ) = λ Var(X) = \lambda Var(X)=λ。
泊松分布的形状随着参数
λ
\lambda
λ的变化而变化。
- 当 λ \lambda λ较小时,泊松分布呈现偏斜的形状,分布的右侧有一个长尾;分布集中在较低的 k k k值附近,因为 λ \lambda λ小,所以出现较高 k k k值的概率很低;
- 随着 λ \lambda λ的增大,分布的中心逐渐向右移动,泊松分布逐渐趋于对称,并且接近正态分布;分布的宽度也增加,使得分布更加平滑。当 λ \lambda λ足够大时(通常 λ > 20 \lambda > 20 λ>20),泊松分布可以用正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)近似,其中 μ = λ \mu = \lambda μ=λ和 σ 2 = λ \sigma^2 = \lambda σ2=λ。
数学推导
-
泊松分布的偏斜度(skewness) γ 1 \gamma_1 γ1为:
γ 1 = 1 λ \gamma_1 = \frac{1}{\sqrt{\lambda}} γ1=λ1
当 λ \lambda λ很小时,偏斜度较大。随着 λ \lambda λ的增大,偏斜度减小,分布变得越来越对称。当 λ \lambda λ很大时,偏斜度 γ 1 \gamma_1 γ1接近于 0,这意味着分布是对称的。 -
泊松分布的峰度 γ 2 \gamma_2 γ2为:
γ 2 = 1 λ \gamma_2 = \frac{1}{\lambda} γ2=λ1
当 λ \lambda λ很大时,峰度 γ 2 \gamma_2 γ2也接近于 0,这进一步表明分布接近正态分布。
图形
看几个不同 λ \lambda λ值下的泊松分布图形:
-
λ = 1 \lambda = 1 λ=1:
- 分布高度偏斜,集中在 0 和 1 附近。
-
λ = 5 \lambda = 5 λ=5:
- 分布仍然有些偏斜,但已经比 λ = 1 \lambda = 1 λ=1时更加对称。
-
λ = 25 \lambda = 25 λ=25:
- 分布接近对称,可以近似为正态分布。
-
λ = 50 \lambda = 50 λ=50:
- 分布非常对称,几乎完全符合正态分布。
泊松噪声
泊松噪声(Poisson Noise)是指在成像过程中,由于光子的随机到达导致的一种噪声。泊松噪声的产生根源在于光的量子性质,即光是由离散的光子组成。当光子击中成像传感器(如CCD或CMOS)时,会转化为电子信号。然而,由于光子的到达是一个随机过程,这导致了检测到的光子数量存在波动,进而形成了图像中的噪声。由于服从泊松分布,称为泊松噪声。泊松分布噪声由图像数据生成的,均值 λ \lambda λ表示图像像素值的期望,由光强决定。泊松噪声的方差也是 λ \lambda λ。噪声的标准差表示噪声的波动程度。标准差越大,噪声的波动越大。
泊松噪声在很多领域都有应用,尤其是在需要处理低光成像的情况,比如天文摄影、医疗成像(如PET成像)、夜视设备等。在这些应用场景中,由于接收到的光子数量较少,泊松噪声成为主要的噪声来源,是影响图像质量的主要因素。这种噪声在低光照条件下的成像中尤为显著。
这种噪声与光强有关,随着光强的增加,泊松噪声的方差增加,但是泊松噪声的平均值也会增加,信号强度的增加速度比噪声强度的增加速度快,信噪比(Signal-to-Noise Ratio, SNR)会提高。
- 在高亮度区域,光强较强时( λ \lambda λ较大),图像的信噪比更高,泊松噪声的影响相对较小;
- 而在低亮度区域,光强较弱时( λ \lambda λ较小),图像的信噪比低,泊松噪声的影响更大。
低光照条件下泊松噪声的方差小,为什么泊松噪声更显著?
从泊松分布的统计特性和信噪比的定义来解释这一现象。
信噪比的定义
信噪比(SNR)是信号强度与噪声强度的比值。在成像和信号处理中,信噪比通常定义为:
SNR
=
信号强度
噪声强度
\text{SNR} = \frac{\text{信号强度}}{\text{噪声强度}}
SNR=噪声强度信号强度
对于泊松分布噪声,信号强度是光子计数的均值
λ
\lambda
λ,噪声强度是噪声的标准差
σ
\sigma
σ。因此,信噪比可以表示为:
SNR
=
λ
λ
=
λ
\text{SNR} = \frac{\lambda}{\sqrt{\lambda}} = \sqrt{\lambda}
SNR=λλ=λ
在讨论信噪比(SNR)时,噪声强度通常用噪声的标准差来表示。这是因为标准差反映噪声的波动程度,而均值反映噪声的噪声的平均水平。
随着光强增加,信噪比的变化
从上述公式可以看出,信噪比 SNR \text{SNR} SNR与光强 λ \lambda λ的平方根成正比。这意味着:
- 当光强 λ \lambda λ增加时,噪声的均值(即 λ \lambda λ)也增加。
- 但噪声的标准差 σ \sigma σ只增加了 λ \sqrt{\lambda} λ。
- 因此,信噪比
SNR
=
λ
\text{SNR} = \sqrt{\lambda}
SNR=λ会随着光强的增加而增加。
这解释了为什么在低光照条件下拍摄的照片通常会有更多的颗粒感或“噪点”。
泊松噪声的普遍存在
泊松噪声在多种成像技术中都会出现,尤其是在那些依赖于光子或其他粒子计数的成像系统中。
- 数字摄影
- 低光照条件:在低光照条件下拍摄的照片,相机传感器接收到的光子数量较少,导致泊松噪声明显。这种噪声表现为图像中的颗粒感或噪点。
- 长时间曝光:长时间曝光时,虽然总的光子数增加,但由于每个像素接收到的光子数仍然是随机的,泊松噪声仍然存在。
- 医学成像
- X射线成像:在X射线成像中,探测器接收到的X射线光子数量有限,尤其是在低剂量扫描时,泊松噪声会影响图像的质量。
- CT扫描:计算机断层扫描(CT)中,每个探测器单元接收到的X射线光子数量也是有限的,泊松噪声会导致图像噪声。
- PET成像:正电子发射断层扫描(PET)中,探测器接收到的正电子湮灭光子数量有限,泊松噪声会影响图像的信噪比。
- 显微成像
- 荧光显微镜:在荧光显微镜中,荧光分子发出的光子数量有限,特别是在低浓度样本中,泊松噪声会影响图像的清晰度。
- 电子显微镜:在电子显微镜中,探测器接收到的电子数量有限,泊松噪声会影响图像的分辨率和对比度。
- 天文成像
- 深空摄影:在拍摄遥远星体或星系时,由于光线非常微弱,相机传感器接收到的光子数量非常少,泊松噪声会导致图像中的噪点。
- 太阳物理学:在太阳物理学研究中,探测器接收到的太阳辐射光子数量有限,泊松噪声会影响图像的细节。
- 生物成像
- 活细胞成像:在活细胞成像中,特别是使用荧光标记时,荧光分子发出的光子数量有限,泊松噪声会影响图像的质量。
- 生物发光成像:在生物发光成像中,生物体发出的光子数量有限,泊松噪声会影响图像的信噪比。
- 安全检查
- 安检X射线成像:在机场或港口的安检X射线成像中,探测器接收到的X射线光子数量有限,特别是在低剂量扫描时,泊松噪声会影响图像的质量。
- 遥感成像
- 卫星成像:在卫星成像中,特别是高分辨率成像,探测器接收到的光子数量有限,泊松噪声会影响图像的清晰度和细节。
泊松噪声处理的方法
由于泊松噪声与信号本身密切相关,去除泊松噪声很难,这些方法只能说是一种解决方案,目前没有特别好的方法,低光照拍照仍然无法很好解决泊松噪声。
- 增加曝光时间:通过增加曝光时间,可以增加接收到的光子数量,从而减少泊松噪声。
- 多帧叠加:拍摄多张图像并进行叠加,可以有效减少噪声,提高图像质量。
- 降噪算法:使用专门的降噪算法,如中值滤波、小波变换、非局部均值滤波等,可以在一定程度上减少泊松噪声。