我谈区域偏心率

偏心率的数学定义

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》P312

在这里插入图片描述
区域的拟合椭圆看这里

Rafael Gonzalez的二阶中心矩的表达不说人话。
在这里插入图片描述
在这里插入图片描述

我认为半长轴和半短轴不等于特征值,而是特征值的根号。我认为Rafael Gonzalez的图11.21和式(11-23)错了。

在这里插入图片描述

因此,用特征值表示椭圆的离心率 e e e的表达式应该是:

e = c a = a 2 − b 2 a e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} e=ac=aa2b2
这里, e e e是离心率, c c c是中心到焦点的距离,而 a a a b b b分别是椭圆的半长轴和半短轴的长度。

代入特征值:

e = s 2 λ 1 − s 2 λ 2 s λ 1 = λ 1 − λ 2 λ 1 e = \frac{\sqrt{s^2\lambda_1 - s^2\lambda_2}}{s\sqrt{\lambda_1}} = \frac{\sqrt{\lambda_1 - \lambda_2}}{\sqrt{\lambda_1}} e=sλ1 s2λ1s2λ2 =λ1 λ1λ2

λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2分别为最大特征值和最小特征值。 s s s表示几个 σ \sigma σ,偏心率与这个尺度无关。

偏心率为:
e = 1 − λ 2 λ 1 e = \sqrt{1 - \frac{\lambda_2}{\lambda_1}} e=1λ1λ2

离心率 e e e是衡量椭圆相对于圆的“拉伸”程度的一个量。离心率 e e e的范围是从 0(对于圆形)到接近但小于 1(对于非常扁平的椭圆)。对于圆形区域, λ 1 = λ 2 \lambda_1 = \lambda_2 λ1=λ2,离心率为 0。对于直线, λ 2 = 0 \lambda_2 = 0 λ2=0,离心率为 1。因此,这个描述符的值范围是 [ 0 , 1 ] [0, 1] [0,1]

马氏距离、PCA相同的理论基础

这与马氏距离、PCA本质上是一样的。相同的理论基础。
在这里插入图片描述

MATLAB的regionprops函数

以下是MATLAB给出的结果,看样子MATLAB给出了拟合椭圆是使用 2 σ 2\sigma 2σ

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ecc = sqrt(stats.MajorAxisLength^2-stats.MinorAxisLength^2)/stats.MajorAxisLength
ecc =

    0.8416

验证

C = cov(samples);
[U,D] = eig(C);
d = diag(D);
[~,order] = sort(d,'descend');
U = U(:,order);
d = d(order);
% D = diag(d(order));
sqrtd = sqrt(d);
4*sqrtd
ans =

  499.5233
  269.8259
<think>好的,我现在需要处理用户的问题:“如何用第二偏心率表示第一偏心率 椭球参数 数学公式”。首先,用户已经询问过椭球参数之间的关系,现在他们特别关注第一和第二偏心率之间的转换。 首先,我应该回忆之前提供的回答,确保这次回答的一致性和扩展性。之前已经给出了第一和第二偏心率的定义以及它们之间的关系式,但现在用户需要更明确的转换方法,特别是如何用第二偏心率(e')来表示第一偏心率(e)。 接下来,我需要确认数学公式的正确性。根据椭球参数的定义,第一偏心率e的公式是√(a² - b²)/a,而第二偏心率e'是√(a² - b²)/b。因此,两者之间的关系应该涉及这两个式子之间的转换。通过代数运算,可以将e用e'表示出来,或者反过来。 可能的步骤是: 1. 写出e和e'的原始定义式。 2. 通过代数方法将其中一个变量替换掉,例如用b = a√(1 - e²)代入到e'的表达式中,从而解出e与e'的关系。 3. 推导出直接的转换公式,如e = e' / √(1 + e'²),或者相反。 同时,需要确保在回答中明确区分两种偏心率,并说明它们的几何意义,这样用户能更好地理解为什么需要这样的转换。 另外,用户可能需要实际的数值例子或代码示例来验证公式的正确性,比如用已知的椭球参数计算两种偏心率,并检查转换是否符合预期。例如,使用WGS84椭球的参数,计算e和e',然后应用转换公式看是否一致。 生成相关问题部分时,要考虑用户可能进一步的问题,比如与其他参数的关系、实际应用中的使用场景,或者不同椭球模型中的差异。因此,相关问题可以涉及如何从其他参数推导偏心率,不同坐标系中的参数选择,以及在实际测量中的应用案例等。 最后,必须严格遵守格式要求,包括数学公式的标记、代码块的格式,以及相关问题的正确排版。检查是否有使用第一人称或步骤词汇,确保回答清晰分点,每个方法或步骤间换行,且没有集中引用内容在末尾。</think>椭球参数中第一偏心率($e$)与第二偏心率($e'$)的数学关系可通过以下步骤推导和表示: **1. 定义式对比** 第一偏心率定义为: $$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$ 第二偏心率定义为: $$e' = \sqrt{\frac{a^2 - b^2}{b^2}}$$ **2. 直接关系推导** 联立两式可得: $$e' = \frac{e}{\sqrt{1 - e^2}} \quad \text{或} \quad e = \frac{e'}{\sqrt{1 + e'^2}}$$ 通过平方运算验证: $$e^2 = \frac{e'^2}{1 + e'^2}$$ **3. 几何意义解释** - $e$反映长半轴$a$方向上的压缩程度 - $e'$反映短半轴$b$方向上的拉伸程度 两者互为补充描述椭球扁平特征。 ```python # 示例代码:已知e'求e(假设e'=0.082094438) e_prime = 0.082094438 e = e_prime / (1 + e_prime**2)**0.5 print(f"第一偏心率e = {e:.8f}") # 输出:第一偏心率e = 0.08181919 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值