二次判别函数的决策面

二次判别函数的决策面是超二次曲面,包括超平面、超平面对、超球面、超椭球面、超抛物面、超双曲面。

二次函数 g ( x 1 , x 2 ) g(x_1, x_2) g(x1,x2)
g ( x 1 , x 2 ) = x T W x + w T x + w 0 g(x_1, x_2) = {\bm x}^ { \mathsf T} {\bm{\mathit{W}}}{\bm x} + \bm{w}^ { \mathsf T} \bm{x} + {{w}_{0}} g(x1,x2)=xTWx+wTx+w0
W = [ w 11 w 12 w 21 w 22 ] {\bm W} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} W=[w11w21w12w22] w = [ w 1 w 2 ] {\bm w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} w=[w1w2] x = [ x 1 x 2 ] {\bm x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2]

g ( x 1 , x 2 ) = w 11 x 1 2 + ( w 12 + w 21 ) x 1 x 2 + w 22 x 2 2 + w 1 x 1 + w 2 x 2 + w 0 g(x_1, x_2) = w_{11}x_1^2 + (w_{12} + w_{21})x_1x_2 + w_{22}x_2^2+ w_1x_1 + w_2x_2 + w_{0} g(x1,x2)=w11x12+(w12+w21)x1x2+w22x22+w1x1+w2x2+w0
决策面方程
g ( x 1 , x 2 ) = 0 g(x_1, x_2) = 0 g(x1,x2)=0

球面

在这里插入图片描述
在这里插入图片描述

椭球面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

双曲面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

平面对

在这里插入图片描述
在这里插入图片描述

抛物面

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

超平面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值