二次判别函数的决策面是超二次曲面,包括超平面、超平面对、超球面、超椭球面、超抛物面、超双曲面。
二次函数
g
(
x
1
,
x
2
)
g(x_1, x_2)
g(x1,x2)
g
(
x
1
,
x
2
)
=
x
T
W
x
+
w
T
x
+
w
0
g(x_1, x_2) = {\bm x}^ { \mathsf T} {\bm{\mathit{W}}}{\bm x} + \bm{w}^ { \mathsf T} \bm{x} + {{w}_{0}}
g(x1,x2)=xTWx+wTx+w0
W
=
[
w
11
w
12
w
21
w
22
]
{\bm W} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}
W=[w11w21w12w22]
w
=
[
w
1
w
2
]
{\bm w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}
w=[w1w2]
x
=
[
x
1
x
2
]
{\bm x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
x=[x1x2]
g
(
x
1
,
x
2
)
=
w
11
x
1
2
+
(
w
12
+
w
21
)
x
1
x
2
+
w
22
x
2
2
+
w
1
x
1
+
w
2
x
2
+
w
0
g(x_1, x_2) = w_{11}x_1^2 + (w_{12} + w_{21})x_1x_2 + w_{22}x_2^2+ w_1x_1 + w_2x_2 + w_{0}
g(x1,x2)=w11x12+(w12+w21)x1x2+w22x22+w1x1+w2x2+w0
决策面方程
g
(
x
1
,
x
2
)
=
0
g(x_1, x_2) = 0
g(x1,x2)=0
球面
椭球面
双曲面
平面对
抛物面
超平面