神经网络发展历程——积跬步至千里

神经网络类型线性or非线性创新问题备注
感知器单层线性模型,输出 + 1 +1 +1 − 1 -1 1误差反馈学习阈值函数不可导,构造学习规则与感知器准则等价
线性神经元单层线性模型梯度下降法训练参数线性函数,多层仍是线性变换本质上是最小二乘准则,最小化误差平方和
浅层神经网络(早期)多层非线性模型Sigmoid、非线性、BP算法一般单个隐含层、多层梯度消失多元复合函数求导的链式法则
深层神经网络(现代)多层非线性模型ReLU、学习算法、参数初始化——更好的神经层激活函数(如ReLU)
更好的权重初始化方案
更好的梯度下降法(如RMSprop和Adam)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值