神经网络类型 | 层 | 线性or非线性 | 创新 | 问题 | 备注 |
---|---|---|---|---|---|
感知器 | 单层 | 线性模型,输出 + 1 +1 +1, − 1 -1 −1 | 误差反馈学习 | 阈值函数不可导,构造学习规则 | 与感知器准则等价 |
线性神经元 | 单层 | 线性模型 | 梯度下降法训练参数 | 线性函数,多层仍是线性变换 | 本质上是最小二乘准则,最小化误差平方和 |
浅层神经网络(早期) | 多层 | 非线性模型 | Sigmoid、非线性、BP算法 | 一般单个隐含层、多层梯度消失 | 多元复合函数求导的链式法则 |
深层神经网络(现代) | 多层 | 非线性模型 | ReLU、学习算法、参数初始化 | —— | 更好的神经层激活函数(如ReLU) 更好的权重初始化方案 更好的梯度下降法(如RMSprop和Adam) |
神经网络发展历程——积跬步至千里
于 2025-05-04 08:32:16 首次发布