MIT OpenCourse 18.06 Linear Algebra 2

矩阵消元

1 矩阵的消元法

 
给出一方程组:
 

{ x + 2 y + z = 2 ① 3 x + 8 y + z = 12 ② 4 y + z = 2 ③ \begin{cases} x+2y+z=2\quad①\\ 3x+8y+z=12\quad②\\ 4y+z=2\quad③ \end{cases} x+2y+z=23x+8y+z=124y+z=2

 
根据初中高中所学到的数学知识,解此类方程组需要对其进行消元处理
但是对此类方程组重复进行加减运算比较复杂,转化为矩阵再进行运算会方便一些
因此,可以将该方程组表达为Ax=b的形式:
 

[ 1 2 1 3 8 1 0 4 1 ] × [ x y z ] = [ 2 12 2 ] \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix} \end{gathered} 130284111×xyz=2122

1.1 我们在中学是怎么消元的

 
消元法思路的第一步:
将方程①从方程②中消去,从而消去x
 

② − 3 × ① ②-3\times ① 3×

 
由此可得
 

y − z = 3 y-z=3 yz=3

 
然后只需要一步步消去y然后得到z
然后把值带回原方程组就ok了!
显然,要这样解完整个方程组,肯定要写一堆式子,贼麻烦
反正在中学做这种类型的数学题的时候深有体会
所以...我们不如试试用矩阵来干这个活?
说不定就简单点了呢?
 

1.2 用矩阵消元

1.2.1 怎么用矩阵消元

 
1.1 中的运算可看作矩阵
 

[ 1 2 1 3 8 1 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} 130284111

 
的第二行减去三倍的第一行
这样表示就感觉比写一堆式子简单多了!
我现在迫不及待要用矩阵做完这个方程组的消元!
 

[ 1 2 1 3 8 1 0 4 1 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ r o w 3 − 2 × r o w 2 [ 1 2 1 0 2 − 2 0 0 5 ] \begin{gathered} \begin{bmatrix} \boxed1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row2-3\times row1}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&\boxed2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row3-2\times row2}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&\boxed5 \end{bmatrix} \end{gathered} 130284111row23×row1100224121row32×row2100220125

 
其中被方框圈起来的元素被称作主元
其作用可以理解为
在矩阵中消去下一行相同列的元素
或者
在方程组中消去下一方程中对应的相同未知数
 
还有
最后那个左下角全是0的矩阵叫做上三角矩阵
记作U
 

1.2.2 用矩阵消元的过程中可能碰到的问题

1.2.2.1 主元为0
 
显然,主元不能为0
要不然它怎么用自己去消元!
但是有时候我们就会碰到主元为0的情况
比如我随便弄个第一个主元为0的矩阵
 

[ 0 2 1 3 8 1 0 4 1 ] \begin{gathered} \begin{bmatrix} \boxed0&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} 030284111

 
但是不要害怕!
这时候我们只需要进行换行操作就可以了
就像这样
 

[ 0 2 1 3 8 1 0 4 1 ] ⟶ r o w 1 ⇔ r o w 2 [ 3 8 1 0 2 1 0 4 1 ] \begin{gathered} \begin{bmatrix} \boxed0&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row1 \Leftrightarrow row2}{\longrightarrow} \begin{gathered} \begin{bmatrix} \boxed3&8&1 \\ 0&2&1 \\ 0&4&1 \end{bmatrix} \end{gathered} 030284111row1row2300824111

 
这样换好之后主元就不为0了
而且对消元运算没有影响
继续进行消元运算就可以!
因为矩阵中的这个操作其实是对应着
在方程组中交换一下方程①和方程②的位置
 

{ 2 y + z = 2 ① 3 x + 8 y + z = 12 ② 4 y + z = 2 ③ ⟶ ① ⇔ ② { 3 x + 8 y + z = 12 ① 2 y + z = 2 ② 4 y + z = 2 ③ \begin{cases} 2y+z=2\quad①\\ 3x+8y+z=12\quad②\\ 4y+z=2\quad③ \end{cases}\stackrel{① \Leftrightarrow ②}{\longrightarrow} \begin{cases} 3x+8y+z=12\quad①\\ 2y+z=2\quad②\\ 4y+z=2\quad③ \end{cases} 2y+z=23x+8y+z=124y+z=23x+8y+z=122y+z=24y+z=2

 
根本不影响消元好不好!!!
 
1.2.2.2 方程无解
 
但是即使我们巧妙解决了主元为0的问题
解到最后
我们还是可能遇到无解的情况
比如这个方程组
 

{ x + 2 y + z = 2 ① 3 x + 8 y + z = 12 ② 4 y − 4 z = 2 ③ \begin{cases} x+2y+z=2\quad①\\ 3x+8y+z=12\quad②\\ 4y-4z=2\quad③ \end{cases} x+2y+z=23x+8y+z=124y4z=2

 
我们用矩阵进行消元
 

[ 1 2 1 3 8 1 0 4 − 4 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 − 4 ] ⟶ r o w 3 − 2 × r o w 2 [ 1 2 1 0 2 − 2 0 0 0 ] \begin{gathered} \begin{bmatrix} \boxed1&2&1 \\ 3&8&1 \\ 0&4&-4 \end{bmatrix} \end{gathered}\stackrel{row2-3\times row1}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&\boxed2&-2 \\ 0&4&-4 \end{bmatrix} \end{gathered}\stackrel{row3-2\times row2}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&\boxed0 \end{bmatrix} \end{gathered} 130284114row23×row1100224124row32×row2100220120

 
它最后一个主元是0
而且因为它是最后一个
所以没法通过换行来解决问题
这种情况就无解
GG
不过在以后的课中我们会知道这种是不可逆的矩阵
现在就别管了
慢慢学吧!
 

2 回代

2.1 回代是啥来着?

 
如果你还记得,跳过就行
但如果你忘了
咱还是拿这个方程组来说事儿
 

{ x + 2 y + z = 2 ① 3 x + 8 y + z = 12 ② 4 y + z = 2 ③ \begin{cases} x+2y+z=2\quad①\\ 3x+8y+z=12\quad②\\ 4y+z=2\quad③ \end{cases} x+2y+z=23x+8y+z=124y+z=2

 
先消元
 

② − 3 × ① ③ − 2 × ② ②-3\times①\\ ③-2\times② 3×2×

 
然后得到
 

{ x + 2 y + z = 2 ① 2 y − 2 z = 6 ④ 5 z = − 10 ⑤ \begin{cases} x+2y+z=2\quad①\\ 2y-2z=6\quad④\\ 5z=-10\quad⑤ \end{cases} x+2y+z=22y2z=65z=10

 
然后我们可以从方程⑤得到z=-2
得到z=-2后再把它代回④得到y
然后再把y、z的值代回①得到x的过程
就是回代
 

2.2 矩阵的回代

 
刚才做这个方程组
 

{ x + 2 y + z = 2 ① 3 x + 8 y + z = 12 ② 4 y + z = 2 ③ \begin{cases} x+2y+z=2\quad①\\ 3x+8y+z=12\quad②\\ 4y+z=2\quad③ \end{cases} x+2y+z=23x+8y+z=124y+z=2

 
的矩阵的消元的时候,只考虑了方程组左边的未知数和它们的系数
 

[ 1 2 1 3 8 1 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} 130284111

 
但是要完整地解完这个方程组
得到未知数的解
还是得带着方程组右边的常数来运算
也就是
 

[ 2 12 2 ] \begin{gathered} \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix} \end{gathered} 2122

 
这样才能得到未知数的值
然后通过回代解出全部的未知数
所以,我们可以把方程组右边常数组成的矩阵
加到左边未知数与系数组成的矩阵上
就像这样
 

[ 1 2 1 3 8 1 0 4 1 2 12 2 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 3&8&1\\ 0&4&1 \end{matrix}& \begin{matrix} 2\\ 12\\ 2 \end{matrix} \end{array} \right ] 1302841112122

 
这样得到的矩阵叫**增广矩阵**
然后对增广矩阵进行消元就可以了
在本质上,这等同于对方程组进行
 

② − 3 × ① ③ − 2 × ② ②-3\times①\\ ③-2\times② 3×2×

 
的运算
 
其矩阵形式如下:
 

[ 1 2 1 3 8 1 0 4 1 2 12 2 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 1 2 6 2 ] ⟶ r o w 3 − 2 × r o w 2 [ 1 2 1 0 2 − 2 0 0 5 2 6 − 10 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 3&8&1\\ 0&4&1 \end{matrix}& \begin{matrix} 2\\ 12\\ 2 \end{matrix} \end{array} \right ]\stackrel{row2-3\times row1}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 0&2&-2\\ 0&4&1 \end{matrix}& \begin{matrix} 2\\ 6\\ 2 \end{matrix} \end{array} \right ]\stackrel{row3-2\times row2}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 0&2&-2\\ 0&0&5 \end{matrix}& \begin{matrix} 2\\ 6\\ -10 \end{matrix} \end{array} \right ] 1302841112122row23×row1100224121262row32×row21002201252610

 
由此,最终得到的增广矩阵
 

[ 1 2 1 0 2 − 2 0 0 5 2 6 − 10 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 0&2&-2\\ 0&0&5 \end{matrix}& \begin{matrix} 2\\ 6\\ -10 \end{matrix} \end{array} \right ] 1002201252610

 
对应的方程组为
 

{ x + 2 y + z = 2 ① 2 y − 2 z = 6 ④ 5 z = − 10 ⑤ \begin{cases} x+2y+z=2\quad①\\ 2y-2z=6\quad④\\ 5z=-10\quad⑤ \end{cases} x+2y+z=22y2z=65z=10

 
和刚才通过方程组的加减得到的结果一毛一样
但是我们得到矩阵U之后
可以通过向上消元实现回代
就像这样
 

[ 1 2 1 0 2 − 2 0 0 5 2 6 − 10 ] ⟶ r o w 2 + 2 5 × r o w 3 [ 1 2 1 0 2 0 0 0 5 2 2 − 10 ] ⟶ r o w 1 − 1 5 × r o w 3 [ 1 2 0 0 2 0 0 0 5 4 2 − 10 ] ⟶ r o w 1 − r o w 2 [ 1 0 0 0 2 0 0 0 5 2 2 − 10 ] \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 0&2&-2\\ 0&0&5 \end{matrix}& \begin{matrix} 2\\ 6\\ -10 \end{matrix} \end{array} \right ]\stackrel{row2+\frac{2}{5}\times row3}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&2&1\\ 0&2&0\\ 0&0&5 \end{matrix}& \begin{matrix} 2\\ 2\\ -10 \end{matrix} \end{array} \right ]\stackrel{row1-\frac{1}{5}\times row3}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&2&0\\ 0&2&0\\ 0&0&5 \end{matrix}& \begin{matrix} 4\\ 2\\ -10 \end{matrix} \end{array} \right ]\stackrel{row1-row2}{\longrightarrow} \left [ \begin{array}{c:c} \begin{matrix} 1&0&0\\ 0&2&0\\ 0&0&5 \end{matrix}& \begin{matrix} 2\\ 2\\ -10 \end{matrix} \end{array}\right] 1002201252610row2+52×row31002201052210row151×row31002200054210row1row21000200052210

 
这样就能回代得到最终的矩阵了
对用着
 

{ x = 2 2 × y = 2 5 × z = − 10 \begin{cases} x=2\\ 2\times y=2\\ 5\times z=-10 \end{cases} x=22×y=25×z=10

 
怎么样!
用矩阵进行回代
是不是比起直接写方程组方便多了!
 

3 消元矩阵

3.1 一点复习

 
矩阵乘以向量的结果
可以看作矩阵列的线性组合
例如
 

[ 2 5 1 3 ] × [ 1 2 ] = 1 × [ 2 1 ] + 2 × [ 5 3 ] = [ 12 7 ] \begin{gathered} \begin{bmatrix} 2 & 5 \\ 1 &3 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{gathered}= 1\times \begin{gathered} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{gathered}+ 2\times \begin{gathered} \begin{bmatrix} 5 \\ 3 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 12 \\ 7 \end{bmatrix} \end{gathered} [2153]×[12]=1×[21]+2×[53]=[127]

 
而向量乘以矩阵
则可看作矩阵行的线性组合
例如
 

[ 1 2 ] × [ 2 5 1 3 ] = 1 × [ 2 5 ] + 2 × [ 1 3 ] = [ 4 11 ] \begin{gathered} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 2 & 5 \\ 1 &3 \end{bmatrix} \end{gathered}= 1\times \begin{gathered} \begin{bmatrix} 2 &5 \end{bmatrix} \end{gathered}+ 2\times \begin{gathered} \begin{bmatrix} 1&3 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 4&11 \end{bmatrix} \end{gathered} [12]×[2153]=1×[25]+2×[13]=[411]

 
**注意:**
由这个性质也可以知道
矩阵左乘和右乘相同的矩阵所得到的结果
是不一定相同的!
 

A × B ≠ B × A A\times B \not = B\times A A×B=B×A

 

3.2 消元矩阵

 
取刚才的那个矩阵
 

[ 1 2 1 3 8 1 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} 130284111

 
我们已经知道
该矩阵消元的流程为
 

[ 1 2 1 3 8 1 0 4 1 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ r o w 3 − 2 × r o w 2 [ 1 2 1 0 2 − 2 0 0 5 ] \begin{gathered} \begin{bmatrix} \boxed1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row2-3\times row1}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&\boxed2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row3-2\times row2}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&\boxed5 \end{bmatrix} \end{gathered} 130284111row23×row1100224121row32×row2100220125

 
以其中的第一步
 

[ 1 2 1 3 8 1 0 4 1 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} \boxed1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row2-3\times row1}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&\boxed2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 130284111row23×row1100224121

 
为例
这一步本质上是对矩阵的第一和第二行进行操作
结合1.3.1所回顾的
矩阵左乘一个向量
本质上是对矩阵的行进行排列组合
那么我们是否也可以通过矩阵左乘矩阵的方式实现这一步变换呢?
 

[ ] × [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} && \\ && \\ && \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} ×130284111=100224121

 
这一步操作翻译成行的排列组合就是
新矩阵的第一行为一个原矩阵的第一行加零个原矩阵的第二和第三行
 

[ 1 0 0 ] × [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ && \\ && \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 100×130284111=100224121

 
新矩阵的第二行为负三个原矩阵的一个第一行加上一个第二行和零个第三行
 

[ 1 0 0 − 3 1 0 ] × [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ && \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 130100×130284111=100224121

 
新矩阵的第三行为一个原矩阵的第三行加零个原矩阵的第一和第二行
 

[ 1 0 0 − 3 1 0 0 0 1 ] × [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 130010001×130284111=100224121

 
由此,这一步消元的变换矩阵即为
 

[ 1 0 0 − 3 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} 130010001

 
记作
 

E 21 E_{21} E21

 
(因为是对第2行和第1行的变换)
(所以下标是21)
于是!
矩阵的消元流程
 

[ 1 2 1 3 8 1 0 4 1 ] ⟶ r o w 2 − 3 × r o w 1 [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ r o w 3 − 2 × r o w 2 [ 1 2 1 0 2 − 2 0 0 5 ] \begin{gathered} \begin{bmatrix} \boxed1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row2-3\times row1}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&\boxed2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered}\stackrel{row3-2\times row2}{\longrightarrow} \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&0&\boxed5 \end{bmatrix} \end{gathered} 130284111row23×row1100224121row32×row2100220125

 
就可以等价为
 

[ 1 0 0 0 1 0 0 − 2 1 ] × ( [ 1 0 0 − 3 1 0 0 0 1 ] × [ 1 2 1 3 8 1 0 4 1 ] ) = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{bmatrix} \end{gathered}\times \left( \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} \right)= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 100012001×130010001×130284111=100224121

 
虽然矩阵左乘和右乘的结果不一样
但是矩阵的乘法依然遵循结合率(我也不会证明 但它确实遵循结合率)
 

a × ( b × c ) = ( a × b ) × c a\times \left( b\times c\right) = \left(a\times b\right) \times c a×(b×c)=(a×b)×c

 
由此可得
 

[ 1 0 0 0 1 0 0 − 2 1 ] × ( [ 1 0 0 − 3 1 0 0 0 1 ] × [ 1 2 1 3 8 1 0 4 1 ] ) = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{bmatrix} \end{gathered}\times \left( \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered} \right)= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 100012001×130010001×130284111=100224121

 
等价于
 

( [ 1 0 0 0 1 0 0 − 2 1 ] × [ 1 0 0 − 3 1 0 0 0 1 ] ) × [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \left( \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} \right)\times \begin{gathered} \begin{bmatrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{bmatrix} \end{gathered} 100012001×130010001×130284111=100224121

 
因此整个矩阵的消元流程
可以直接用
 

( [ 1 0 0 0 1 0 0 − 2 1 ] × [ 1 0 0 − 3 1 0 0 0 1 ] ) \left( \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} \right) 100012001×130010001

 
也就是
 

[ 1 0 0 0 1 0 6 − 2 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 6&-2&1 \end{bmatrix} \end{gathered} 106012001

 
这一个矩阵来表示
怎么样!!!
是不是很神奇!!!
是不是比解方程组看起来要简单多了!!!
(但这不是最好的办法)
(详情见1.5)
 

4 置换矩阵

4.1 行置换矩阵

[ 0 1 1 0 ] × [ a b c d ] = [ c d a b ] \begin{gathered} \begin{bmatrix} 0&1 \\ 1&0 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} a&b \\ c&d \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} c&d \\ a&b \end{bmatrix} \end{gathered} [0110]×[acbd]=[cadb]

4.2 列置换矩阵

[ a b c d ] × [ 0 1 1 0 ] = [ b a d c ] \begin{gathered} \begin{bmatrix} a&b \\ c&d \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 0&1 \\ 1&0 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} b&a \\ d&c \end{bmatrix} \end{gathered} [acbd]×[0110]=[bdac]

5 初涉逆矩阵

 
1.3的最后说那个一下子表示全部消元变换流程的矩阵不是最好的方法
那其实考虑的是怎么从A变成U
(如果不记得A和U是啥记得看看上节课的笔记和这节课的1.2.1)
(其实下节课的笔记里也有讲到U是啥)
但是这个最好的方法其实考虑的是怎么从U变回A
这就涉及到矩阵的逆变换
(不是所有的矩阵都可逆 但这一节课写的矩阵都是可逆的)
 

5.1 什么是逆矩阵

 
取变换矩阵
 

[ 1 0 0 − 3 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} 130010001

 
这一步可以理解为
从第二行中减去三倍的第一行
(看作左乘的话)
那么
什么矩阵能复原这一步呢?
什么矩阵能够满足
 

[ ] × [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} && \\ && \\ && \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} ×130010001=100010001

 
显然我们只需要让第二行再加上三倍的第一行就可以了
也就是
 

[ 1 0 0 3 1 0 0 0 1 ] × [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ 3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}\times \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered}= \begin{gathered} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} 130010001×130010001=100010001

 
这个
 

[ 1 0 0 3 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ 3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} 130010001

 
即为矩阵E
 

[ 1 0 0 − 3 1 0 0 0 1 ] \begin{gathered} \begin{bmatrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{bmatrix} \end{gathered} 130010001

 
的逆矩阵
记作
 

E − 1 E^{-1} E1

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值