数字孪生 10 个技术栈

一、概念

数字孪生(Digital Twin)是一种基于数字技术的概念,它是指对于现实世界中的物理实体或系统,通过数字化的方式建立一个虚拟的、与之相对应的数字化模型,从而实现对物理实体或系统的监测、仿真、预测和优化等操作。

数字孪生通常包括两个部分:物理实体和数字化模型。物理实体可以是任何实际存在的事物,例如机器、设备、建筑、城市、生态系统等等。数字化模型则是基于物理实体的数据和信息进行建模,包括几何形状、结构、材料、运行状态、环境参数等等,可以对物理实体进行仿真、预测、优化等操作。

二、应用范围

数字孪生是一种基于数字技术的概念,可以应用于多个领域,其应用范围非常广泛,以下是数字孪生的一些应用范围:

制造业: 数字孪生可以帮助制造商对生产过程进行优化,提高生产效率和质量。

图片

建筑业: 数字孪生可以帮助建筑师和工程师对建筑物进行设计、施工和运营的全生命周期管理。

城市规划: 数字孪生可以帮助城市规划者对城市进行智能化管理和优化,提高城市的可持续性。

图片

能源和环境: 数字孪生可以帮助能源和环境领域的专业人员对能源和环境系统进行监测、仿真和优化。

交通运输: 数字孪生可以帮助交通运输领域的专业人员对交通系统进行优化,提高交通效率和安全性。

图片

医疗保健: 数字孪生可以帮助医疗保健领域的专业人员对患者进行个性化诊断和治疗。

三、十个技术栈

数字孪生是一个综合性的概念,涉及到多个技术领域,以下是数字孪生中常用的技术术语:

三维建模: 用于生成数字孪生的三维模型,可以使用CAD软件、三维建模软件等。

数据采集: 用于采集物理世界中的数据,可以使用传感器、监控设备等。

数据处理: 用于处理采集到的数据,包括数据分析、数据挖掘等。

数据清洗: 指的是对原始数据进行处理和筛选,以确保数据的准确性、完整性和一致性。

数据建模: 指将现实世界中的物理系统或过程转化为数字形式的模型。这个过程包括收集、整理和分析相关的数据,然后使用数学、统计学和计算机科学等方法来构建模型。

物联网技术: 用于连接物理世界中的设备和系统,包括传感器、智能设备、云计算等。

数据传输: 数据传输是非常重要的一环,它扮演着连接实际系统和数字孪生模型的桥梁,起到了数据采集、传输和更新的作用。

空间数据融合:用于存储和处理数字孪生的数据和模型,包括云存储、云计算、云服务等。

原型设计: 是指在设计过程中创建一个低保真或高保真的可视化模型,以展示和演示最终产品的外观、布局和交互。

数据可视化与模拟仿真: 用于展示数字孪生的数据和模型,包括图表、地图、动画等。通过建立物理系统的数学模型,数字孪生平台可以进行虚拟仿真,模拟物理系统在不同条件下的运行情况。

数字孪生涉及到多个技术领域,需要综合运用多种技术手段来实现数字孪生的构建和应用。

图片


via:

### 交通数字孪生与大模型的技术栈 #### 技术栈概述 交通数字孪生的核心在于实现物理世界与虚拟世界的实时映射,其技术栈通常涉及多个层面,包括感知层、通信层、计算层以及应用层。这些层次共同构成了支持交通数字孪生的大规模仿真和预测能力的基础[^1]。 #### 数据采集与处理 在感知层面上,利用传感器网络获取车辆运行状态、道路状况以及其他动态参数。为了应对海量多源异构数据带来的挑战,采用大数据技术和人工智能方法来清洗、转换并存储这些原始信息成为必要手段之一。例如,在工业复杂系统的背景下提到过的方法同样适用于此场景——即通过机器学习或者深度学习算法挖掘潜在规律从而辅助决策制定过程[^2]。 #### 建模仿真 对于具体的应用开发而言,则需借助专业的三维建模工具完成可视化呈现工作;这类工具有通用型产品如Blender/Maya/3DMax等,也有针对特定领域定制化解决方案比如SolidWorks(简称SW)/Unigraphics NX (简称UG),甚至是建筑设计专用程序Revit等等[^3] 。值得注意的是,当涉及到复杂的工程设计时往往还需要考虑如何有效地加载大型文件格式以便后续操作顺利开展起来。 另外值得一提的就是关于平台级的支持方面:一个完整的PaaS(Patform-as-a-service) 平台应该具备哪些要素呢?根据已有资料可知它至少要涵盖以下几个主要组成部分 – 地图管理、资源调配(含但不限于地理信息系统中的各类素材)、工程项目跟踪记录等功能项外加必要的安全保障措施以保护敏感个人信息不被泄露出去的同时还能满足不同角色之间相互协作的需求– 这一点特别重要因为只有这样才能真正意义上做到资源共享最大化进而提升整体工作效率水平[ ^4 ]. #### 计算框架 最后不得不提一下当前炙手可热的人工智能预训练语言模型(LLM), 它们凭借强大的泛化能力和生成潜力正在改变传统行业的运作模式。尽管如此, 将此类先进理论付诸实践仍面临诸多难题亟待解决; 比方说怎样平衡精度同效率之间的关系? 又或者是考虑到实际部署环境下的硬件条件限制等因素之后又该如何调整优化策略使之更加贴合业务需求? ```python import numpy as np from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) def preprocess_data(data): """Data preprocessing function.""" normalized_data = data / max_value_in_dataset return normalized_data processed_X_train = preprocess_data(X_train) ``` 上述代码片段展示了简单的数据分割及预处理流程,这是任何基于AI的系统不可或缺的部分。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值