机器学习实验(四):用tensorflow实现卷积神经网络识别人类活动

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents



博主简介:风雪夜归子(英文名:Allen),机器学习算法攻城狮,喜爱钻研Meachine Learning的黑科技,对Deep Learning和Artificial Intelligence充满兴趣,经常关注Kaggle数据挖掘竞赛平台,对数据、Machine Learning和Artificial Intelligence有兴趣的童鞋可以一起探讨哦,个人CSDN博客:http://blog.csdn.net/u013719780?viewmode=contents



在近几年,越来越多的用户在智能手机上安装加速度传感器等一些设备,这就为做一些应用需要收集相关的数据提供了方便。人类活动识别(human activity recognition (HAR))是其中的一个应用。对于HAR,有很多的方法可以去尝试,方法的performance很大程度上依赖于特征工程。传统的机器学习特征工程通常是手工完成(人肉工程),这需要拥有较好的专业领域知识,同时比较耗时间。神经网络特别是深度学习在object recognition, machine translation, audio generation等取得了很大的成功,同样,深跌学习技术也可以应用到HAR上。

在本文中,我们将会看到如何将卷积神经网络技术应用到HAR问题上。

数据预处理

我们将会使用Wireless Sensor Data Mining (WISDM) lab发布的数据集Actitracker(http://www.cis.fordham.edu/wisdm/dataset.php) 这个数据集是在一个可以控制的实验环境中收集到的。数据集中包含6个活动类别,分别是jogging, walking, ascending stairs, descending stairs, sitting and standing。 这个数据集关于activities(labels)分布如下图所示:



首先导入相应的库和函数reading, normalising and plotting数据集。


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf

%matplotlib inline
plt.style.use('ggplot')

def read_data(file_path):
    column_names = ['user-id','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
    data = pd.read_csv(file_path,header = None, names = column_names)
    return data

def feature_normalize(dataset):
    mu = np.mean(dataset,axis = 0)
    sigma = np.std(dataset,axis = 0)
    return (dataset - mu)/sigma
    
def plot_axis(ax, x, y, title):
    ax.plot(x, y)
    ax.set_title(title)
    ax.xaxis.set_visible(False)
    ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
    ax.set_xlim([min(x), max(x)])
    ax.grid(True)
    
def plot_activity(activity,data):
    fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
    plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
    plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
    plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
    plt.subplots_adjust(hspace=0.2)
    fig.suptitle(activity)
    plt.subplots_adjust(top=0.90)
    plt.show()

首先,读取数据集,然后normalise特征x-axis、y-axis、z-axis。


dataset = read_data('/Users/youwei.tan/Desktop/WISDM_ar_v1.1/WISDM_ar_v1.1_raw.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])

接下来可视化x-axis、y-axis、z-axis与时间的关系图。


for activity in np.unique(dataset["activity"]):
    subset = dataset[dataset["activity"] == activity][:180]
    plot_activity(activity,subset)







数据已经处理好啦,现在需要将数据转变成卷积神经网络模型所需要的数据形式。具体实现直接看代码:


def windows(data, size):
    start = 0
    while start < data.count():
        yield start, start + size
        start += (size / 2)
        
def segment_signal(data,window_size = 90):
    segments = np.empty((0,window_size,3))
    labels = np.empty((0))
    for (start, end) in windows(data["timestamp"], window_size):
        x = data["x-axis"][start:end]
        y = data["y-axis"][start:end]
        z = data["z-axis"][start:end]
        if(len(dataset["timestamp"][start:end]) == window_size):
            segments = np.vstack([segments,np.dstack([x,y,z])])
            labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
    return segments, labels

segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,90, 3)

现在的数据已经是我们所期待的数据形式了,为了后面做交叉验证,需要将数据集分割为训练集和测试集。


train_test_split = np.random.rand(len(reshaped_segments)) < 0.70
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]

卷积神经网络模型

CNN模型的结构如下图所示:



下面直接上代码:


input_height = 1
input_width = 90
num_labels = 6
num_channels = 3

batch_size = 10
kernel_size = 60
depth = 60
num_hidden = 1000

learning_rate = 0.0001
training_epochs = 5

total_batchs = reshaped_segments.shape[0] // batch_size

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev = 0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.0, shape = shape)
    return tf.Variable(initial)
	
def depthwise_conv2d(x, W):
    return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
	
def apply_depthwise_conv(x,kernel_size,num_channels,depth):
    weights = weight_variable([1, kernel_size, num_channels, depth])
    biases = bias_variable([depth * num_channels])
    return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
    
def apply_max_pool(x,kernel_size,stride_size):
    return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1], 
                          strides=[1, 1, stride_size, 1], padding='VALID')

X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels])
Y = tf.placeholder(tf.float32, shape=[None,num_labels])

c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,20,2)
c = apply_depthwise_conv(p,6,depth*num_channels,depth//10)

shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])

f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//10), num_hidden])
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))

out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases)

loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)

correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

cost_history = np.empty(shape=[1],dtype=float)

with tf.Session() as session:
    tf.initialize_all_variables().run()
    for epoch in range(training_epochs):
        for b in range(total_batchs):    
            offset = (b * batch_size) % (train_y.shape[0] - batch_size)
            batch_x = train_x[offset:(offset + batch_size), :, :, :]
            batch_y = train_y[offset:(offset + batch_size), :]
            _, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
            cost_history = np.append(cost_history,c)
        print "Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
              session.run(accuracy, feed_dict={X: train_x, Y: train_y})
    
    print "Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y})

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值