非简谐项
原子间的相互作用:
v(a+δ)=v(a)+dvdrδ+12d2vdr2δ2+o(δ2)
之前在讨论原子间的相互作用的时候,只用到展开式的前三项,而忽略了更高次的项(非简谐项)。在这样的近似下原子是相互线性独立的谐振子,能够处理振动问题。不过在涉及到热膨胀和热传导等问题时,仅仅用到前三项是不够的。
谐振子之间独立,意味着不发生能量的交换,不能传出能量,也不能吸收能量,所以就不能解决热传导、热平衡、热辐射等问题。
热膨胀
热膨胀 压力不变的情况下,晶体的体积随着温度升高而增大的现象。
原因:分子间相互作用的非简谐项。
原子离开平衡位置的平均偏移量
x¯
x¯=∫xeUkBTdx∫eUkBTdx
如果用 U=12βx2 计算,总有 x¯=0 ,即无论温度是多少,分子都不会发生偏移,也就不能解释膨胀现象。
如果用
U=12βx2+16γx3
计算,
x¯=∫xeUkBTdx∫eUkBTdx=∫xe12βx2kBTe16γx3kBTdx∫e12βx2kBTe16γx3kBTdx=∫xe−12βx2kBT(1−16γx3)dx∫e−12βx2kBT(1−16γx3)dx=0−16γ∫x4e−12βx2kBTdx∫e−12βx2kBTdx−0=γkBTβ22πkBTβ−−−−−−√2πkBTβ−−−−−−√=γkBTβ2
所以
r=r0+x¯=r0(1+αT)
其中
α=γkBr0β2
称为膨胀系数。
热传导
- 热传导 晶体中热量由高温处流向低温处的现象。
- 热流密度 单位时间内经过单位面积的热量,记为
j
。
热流密度应当正比于温度的梯度
j=−K∇T
其中 K 称为热传导系数。
温度
E¯¯¯=12ℏω+ℏωieℏωi/kBT−1
由于研究温度较高的情形,忽略零点能。引入平均声子数
n¯=1eℏωi/kBT−1≈kBTℏω∝T
有
E¯(ω)=n¯ℏω
微观解释:温度高的地方振动幅度大、振动模式多,可以认为有更多的声子被激发。当格波传播到低温处(同时也是声子扩散的过程),低温处的格波振动趋于和高温处相同,这样就实现了热量的传递。即,声子通过碰撞传递能量。
热流的大小,取决于声子的运动速度
μ
和平均自由程
λ
。
μ
可以取声速。
在上面的模型中,设两侧的温度分别为
TA,TB
,
TA>TB
,平均声子数分别为
n¯A,n¯B.
由于有六个方向,在
x0
处由A到B的声子数
16n¯AμdtdS
由B到A的声子数
16n¯BμdtdS
净传导的热量
16(n¯A−n¯B)μdtdS⋅ℏω
j=16(n¯A−n¯B)μ⋅ℏω=μ6(E¯A−E¯B)=μ6∂E¯∂TΔT=μ6∂E¯∂TdTdxΔx=μ6∂E¯∂TdTdx(−2λ)=−13μλCVdTdx
所以
K=13μλCV
本文主要参考Dr. Shen 固体物理课件