固体中电子运动的模型
经典金属自由电子气模型
- 特鲁德(Drude)模型,也叫凝胶模型(Jellium Mode)
- 1900年Drude提出
- 将气体分子运动论应用到固体,解决金属的电导和热导现象。
- 离子实不动,价电子弥散于金属内部,构成自由电子气。
- 基本假设:
- 电子遵从波尔兹曼统计
- 独立电子近似——忽略电子之间的作用
- 自由电子近似——忽略金属离子和电子之间的作用
- 弛豫时间近似——概括电子和金属离子碰撞特征,假定弛豫时间 τ 和电子的速度和位置无关。
- 成功解释欧姆定律
E=ρj - 成功解释金属电导和热导的Wiedeman-Franz定律
Kσ=cT
其中 K 是热导率,σ 是电导率, c 是常数。 - 困难:根据波尔兹曼统计,平均每个电子对金属热容的贡献是
32kB ,和实验结果不符。
量子的自由电子模型
- 索末菲(Sommerfeld)模型,1928年
- 对Trude模型的改进:
- 使用费米-狄拉克统计
- 电子的能态由薛定谔方程决定:电子在金属内部运动,看作在无限深势阱中运动
−ℏ22m∇2ψ(r)=Eψ(r)
方程的解
ψ(r)=1Ω−−√eik⋅rE=ℏ2k22m
其中 Ω 是金属的体积。
- 成功解释金属的热容
- 困难:忽略了电子和金属离子之间的作用,不能解释为什么有导体和绝缘体的区别
能带理论
- Bloch,1928年
- 对量子自由电子模型的修正:考虑固体中离子和其他电子对电子的作用,方法是用周期性势场来描述。
- 基本假设:
- 绝热近似(Born-Oppenheimer):离子实不动。多粒子问题转化为多电子问题。
- 单电子近似(Hartree-Fork):用平均场代替其他电子对电子的作用。将多电子问题转化为单电子问题。
- 周期场近似:所有离子势场和其他电子的平均势场简化为周期场,具有和晶格一样的平移对称性。
假设晶体有
N
个原子,离子实
体系的哈密顿量:
H=−∑n=1Nℏ22M∇2n−∑i=1NZℏ22m∇2i+12∑n,n′Z2e24πε01|Rn−Rn′|+12∑i,je24πε01|ri−rj|−∑i=1NZ∑n=1NZe24πε01|Rn−ri|=Tn+Te+Vnn(Rn,Rn′)+Vee(ri,rj)+Ven(ri,Rn)
根据绝热近似,只考虑电子体系
He=Te+Vee(ri,rj)+Ven(ri,Rn)
根据单电子近似, Vee 用平均场来代替,即每个电子受到其他电子总的作用用平均势场来代替。
Vee=12∑i,je24πε01|ri−rj|=∑i=1NZveri
现在仅取
Z=1
的情况分析,
He=∑i=1N[−ℏ22m∇2i+ve(ri)−∑k=1ne24πε01|ri−Rk|]
根据周期场近似,电子体系的势场 V(r)=ve(ri)−∑nk=1e24πε01|ri−Rk| 具有和晶格相同的平移对称性,即
V(r+Rn)=V(r)
至此,电子满足的薛定谔方程为
[−ℏ22m∇2+V(r)]ψ(r)=Eψ(r)
其中
V(r+Rn)=V(r)
本篇主要参考Mr. Shen的课件