能带理论

固体中电子运动的模型

经典金属自由电子气模型

  • 特鲁德(Drude)模型,也叫凝胶模型(Jellium Mode
  • 1900年Drude提出
  • 将气体分子运动论应用到固体,解决金属的电导和热导现象。
  • 离子实不动,价电子弥散于金属内部,构成自由电子气。
  • 基本假设:
    • 电子遵从波尔兹曼统计
    • 独立电子近似——忽略电子之间的作用
    • 自由电子近似——忽略金属离子和电子之间的作用
    • 弛豫时间近似——概括电子和金属离子碰撞特征,假定弛豫时间 τ 和电子的速度和位置无关。
  • 成功解释欧姆定律
    E=ρj
  • 成功解释金属电导和热导的Wiedeman-Franz定律
    Kσ=cT

    其中 K 是热导率,σ是电导率, c 是常数。
  • 困难:根据波尔兹曼统计,平均每个电子对金属热容的贡献是32kB,和实验结果不符。

量子的自由电子模型

  • 索末菲(Sommerfeld)模型,1928年
  • 对Trude模型的改进:
    • 使用费米-狄拉克统计
    • 电子的能态由薛定谔方程决定:电子在金属内部运动,看作在无限深势阱中运动
      22m2ψ(r)=Eψ(r)

      方程的解
      ψ(r)=1ΩeikrE=2k22m

      其中 Ω 是金属的体积。
  • 成功解释金属的热容
  • 困难:忽略了电子和金属离子之间的作用,不能解释为什么有导体和绝缘体的区别

能带理论

  • Bloch,1928年
  • 对量子自由电子模型的修正:考虑固体中离子和其他电子对电子的作用,方法是用周期性势场来描述。
  • 基本假设:
    • 绝热近似(Born-Oppenheimer):离子实不动。多粒子问题转化为多电子问题。
    • 单电子近似(Hartree-Fork):用平均场代替其他电子对电子的作用。将多电子问题转化为单电子问题。
    • 周期场近似:所有离子势场和其他电子的平均势场简化为周期场,具有和晶格一样的平移对称性。

假设晶体有 N 个原子,离子实N个,带正电荷 Ze 个,每个离子实质量为 M ,位置在Rn;价电子 NZ 个,每个电子质量 m ,位置ri.

体系的哈密顿量:

H=n=1N22M2ni=1NZ22m2i+12n,nZ2e24πε01|RnRn|+12i,je24πε01|rirj|i=1NZn=1NZe24πε01|Rnri|=Tn+Te+Vnn(Rn,Rn)+Vee(ri,rj)+Ven(ri,Rn)

根据绝热近似,只考虑电子体系

He=Te+Vee(ri,rj)+Ven(ri,Rn)

根据单电子近似, Vee 用平均场来代替,即每个电子受到其他电子总的作用用平均势场来代替。

Vee=12i,je24πε01|rirj|=i=1NZveri

现在仅取 Z=1 的情况分析,

He=i=1N[22m2i+ve(ri)k=1ne24πε01|riRk|]

根据周期场近似,电子体系的势场 V(r)=ve(ri)nk=1e24πε01|riRk| 具有和晶格相同的平移对称性,即

V(r+Rn)=V(r)

至此,电子满足的薛定谔方程为

[22m2+V(r)]ψ(r)=Eψ(r)

其中
V(r+Rn)=V(r)


本篇主要参考Mr. Shen的课件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值