多模态(RGB-D)——FuseNet

  • 《FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture》
    2016,Hazirbas C, Ma L, Domokos C, et al. FuseNet

FuseNet 是一种基于RGBD图像做语意分割的网络,在网络的前端采用两个CNN结构分别提取RGB图像和深度图像的特征,采用Sparse Fusion的方式将深度网络的部分特征融合到RGB网络中。
1.FuseNet网络结构:
在这里插入图片描述
作者提出了一种解决方法:如何去合并互补的深度信息到语义分割框架。双分支的网络同时从RGB和Depth提取特征,并将Depth特征融入RGB的特征图中作为下一层的输入。

2. 融合策略
在这里插入图片描述
作者提出了两种不同的RGB和Depth channels的融合方法,分别是dense and sparse fusion。
sparse fusion:融合层仅插入池化层之前
dense fusion:融合层插入CBR block之后
作者在文章中提出了一个理论,网络的浅层主要提取边缘特征,而RGB图像和深度图像所表现的边缘特征有很大不同。比如对与无结构的边缘主要依靠颜色区分,对于无纹理的边缘主要依靠结构深度区分。所以作者选择从浅层开始对特征进行融合并且通过实验证明浅层的特征融合对性能有很大的提升。
在这里插入图片描述
3.结果分析
图像输入224*224,RGB的resize采用双线性插值,Depth的resize采用最近邻插值。
网络结构:VGG-16
测试结果:
在这里插入图片描述
SparseFusion and DenseFusion by SF,DF,respectively。
从结果可以看出:堆叠Depth和HHA进入RGB能带来轻微的提升,相比于单独的color、depth或HHA。融合的方式提升明显。
因为原始的VGG-16有5层池化,所以有相同数量的fusion layers SF1到SF5,然而在前4层池化层之前融合都有提升,可能原因是准确率饱和,Depth已经提供了非常有区分力的特征在低维去补充RGB的纹理信息。同样的趋势在DF中也存在。

小结:
与以往的多模态融合方式输入端、特征端融合略有不同,作者提出了dense and sparse fusion两种新的融合策略,在分支(双流)网络中进行间接性特征融合。从结果来看,采用Sparse Fusion的方式将深度网络的部分特征融合到RGB网络中效果比较好。


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

### RGB-D多模态融合的技术与实现方法 #### 背景介绍 RGB-D多模态融合是一种结合彩色图像(RGB)和深度信息(D)的技术,旨在利用两者的互补优势来提升计算机视觉任务的效果。然而,由于RGB和深度数据具有不同的特性,如何有效融合这两种模态的数据仍是一个挑战[^2]。 #### 主要技术方向 目前主流的RGB-D多模态融合技术可以分为浅层融合(Shallow Fusion)和深层融合(Deep Fusion)。以下是具体的实现方法和技术细节: 1. **浅层融合 (Shallow Fusion)** 浅层融合通常发生在网络的最后一层或分类阶段。其主要方式有两种:特征融合和决策融合。 - 特征融合是指在网络中将来自不同模态的特征向量拼接在一起,形成一个新的高维特征向量后再送入后续处理层[^4]。 ```python import torch rgb_features = torch.randn(1, 512) # 假设RGB特征维度为512 depth_features = torch.randn(1, 256) # 假设深度特征维度为256 fused_features = torch.cat((rgb_features, depth_features), dim=1) # 拼接特征 ``` - 决策融合则是分别训练独立的模型用于每种模态,最终通过加权平均或其他策略综合各模态的预测结果。 2. **深层融合 (Deep Fusion)** 深层融合不仅关注于高层特征的融合,还涉及中间层次特征的交互。这种方法更注重挖掘两种模态间的深层次关系,从而提高整体性能。例如,《Recurrent Convolutional Fusion for RGB-D Object Recognition》提出了RCFusion架构,该架构通过循环卷积操作逐步增强跨模态特征的学习能力[^1]。 3. **跨模态引导编码器 (Cross-modal Guided Encoder)** 北京大学的研究团队提出了一种基于跨模态引导编码器的新方法,专门针对RGB-D语义分割中的多模态信息融合问题。此方法的核心在于引入了SA-Gate单元,它可以动态调整并重新校准两种模态的权重,突出各自的优势部分;随后借助BMP模块完成多步传播过程,进一步加强全局上下文理解[^3]。 #### 关键难点分析 尽管上述方法取得了较好的效果,但在实际应用过程中仍然面临一些困难: - 如何应对深度传感器带来的噪声干扰; - 怎样解决因物体间外观高度相似而导致的混淆现象; - 需设计高效的算法结构,在保证精度的同时降低计算复杂度。 #### 示例代码片段 以下展示了一个简单的特征级融合示例,适用于PyTorch框架下的双流CNN模型构建: ```python import torch.nn as nn class FeatureFusionModule(nn.Module): def __init__(self, input_dim_rgb, input_dim_depth): super().__init__() self.fc_fuse = nn.Linear(input_dim_rgb + input_dim_depth, output_dim) def forward(self, features_rgb, features_depth): combined_features = torch.cat([features_rgb, features_depth], dim=-1) fused_output = self.fc_fuse(combined_features) return fused_output ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值