lstm 来源结构参考文献 浅谈

Long Short Term网络一般叫做 LSTM,是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广。究竟如何实现LSTM

RNN误区

我感觉有一件很重要的事情一直未被大家充分强调过(而且这也是我为什么不能使用RNN做我想做的事情的主要原因)。RNN和前馈神经网络并没有很大不同。最容易实现RNN的一种方法就是像前馈神经网络使用部分输入到隐含层,以及一些来自隐含层的输出。在网络中没有任何神奇的内部状态。它作为输入的一部分。


RNN的整体结构与前馈网络的结构非常相似


LSTM回顾

本节内容将仅覆盖LSTM的正式定义。有很多其它的好博文,都详细地描述了你该如何设想并思考这些等式。

LSTM有多种变换形式,但我们只讲解一个简单的。一个Cell由三个Gate(input、forget、output)和一个cell单元组成。Gate使用一个sigmoid激活函数,而input和cell state通常会使用tanh来转换。LSTM 的cell可以使用下列的等式来定义:

Gates:


输入变换:


状态更新:


使用图片描述类似下图:


由于门控机制,Cell可以在工作时保持一段时间的信息,并在训练时保持内部梯度不受不利变化的干扰。Vanilla LSTM 没有forget gate,并在更新期间添加无变化的cell状态(它可以看作是一个恒定的权值为1的递归链接),通常被称为一个Constant Error Carousel(CEC)。这样命名是因为它解决了在RNN训练时一个严重的梯度消失和梯度爆炸问题,从而使得学习长期关系成为可能。



如果你有兴趣的话,下面还有几篇关于RNN的好论文:

阅读更多
想对作者说点什么? 我来说一句

LSTM原文章

2016年11月10日 406KB 下载

没有更多推荐了,返回首页

不良信息举报

lstm 来源结构参考文献 浅谈

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭