我将以概要形式介绍OpenAI的Whisper模型,并说明其是端到端模型,而非序列到序列模型。如需更详细的介绍,请查阅相关论文和官方文档。
OpenAI的Whisper模型介绍
Whisper是OpenAI发布的一个通用的语音识别模型,它采用了大量的多语言和多任务的监督数据进行训练,旨在达到接近人类水平的鲁棒性和准确性。这一模型的出现,标志着OpenAI在语音识别领域的又一次重要突破。
模型训练
Whisper模型的训练数据来自于网络上的68万小时多语言(98种语言)和多任务监督数据。这种庞大的数据集使得模型能够更好地应对各种口音、背景噪音和技术术语,从而提高了识别的准确性。此外,该模型还支持99种不同语言的转录以及从这些语言到英语的翻译,进一步体现了其多语言处理的能力。
模型架构
Whisper模型的核心架构是一个简单的端到端方法,采用了编码器-解码器的Transformer模型。这种架构使得模型能够将输入的音频直接转换为对应的文本序列,而无需经过复杂的中间处理过程。
具体来说,输入的音频首先被分成30秒一段的模块,并转换成log-Mel频谱图。然后,这些频谱图被传递到编码器中进行处理。编码器负责计算注意力机制,以捕捉音频中的关键信息。最后,编码器输出的数据被传递给解码器,解码器被训练来预测相应的文本序列。同时,解码器还会添加特殊标记,以支持不同的任务,
OpenAI发布的Whisper模型是一个多语言、多任务的通用语音识别模型,采用大规模数据训练,实现了高准确性和鲁棒性。其端到端架构直接将音频转换为文本,不依赖传统Seq2Seq模型的编码和解码过程。Whisper模型支持多种语言的转录和翻译,具有广泛的应用前景。
订阅专栏 解锁全文
3017

被折叠的 条评论
为什么被折叠?



