费马大定理指的是,对于整数,如下方程不可能成立,
现在我们尝试给出一个基于超复数的证明。
首先给出超复数中虚数单位的定义,
其中被视为周期的总长度。因为完成一个周期就相当于再次从0开始,所以它实际上可以被认为就是0在更大范围中观测到的真实值。
现在回到,
当时,我们可以写出,
这里体现了虚数单位的作用:虚数单位将二次运算调和为二项乘积,这就提供了其等于某数平方的可能性,尤其体现在二项乘积的两项中加上或者减去的是周期本身的时候。
现在考虑,的情况,
假定如下形式可以成立(不要求t是否为整数,但必须为实数),
将负号替换为,
将替换为
得到一元二次方程,根据求根公式,
若要有实数解(显然作为周期不可能是任何形式的虚数单位),则判别式,
也就是
若要解中没有无理数(周期必须是有理数),则要求判别式必须是某个整数的平方,也就是说,
(此时由于,
,可知
)
为了为整数,则
本身必须是一个平方数,或者
为偶数。
因为引入虚数单位之后的勾股定理,
可以写成,
所以对于平方数而言,和
的位置可以交换,进而导致
和
的位置也可以交换,所以若要求
是平方数,则
和
也必须是平方数,此时退回到勾股定理的形式。
如果为偶数,
此时两边不可能同为整数,因为两者具有无理数的比例数值。
于是剩下最后一种情况,
显然
由此得到,
此时,
当的时候,等式显然有整数解,
当的时候,等式存在有整数解的可能性,因为
确实可以存在,使得,
所以有,
而当的时候,
即便是,
时
都是整数可以成立,但是
显然不是有理数更不是整数,所以
不可能是整数,所以,方程
中必有一个数(比如)不是整数,即,
其中都是整数不可能成立。
总结一下,到底是什么原因,为啥两个超过2次的整数相加不可能得到同次的整数:原因就在于,一个整数的多少次幂就需要多少个整数根相乘。某个整数的3次幂需要3个根相乘,但是2个整数的3次幂相加就算引入多次周期,也无法得出3次幂需要的3个根相乘的效果。所以必须是3个项相加,借助于周期性,才能得到3次幂的效果。否则就要引入更深层的无理数结构,比如无限连分数结果,才能帮助2项实现3次的效果,这时候,至少有一项已经不可能是整数了。
上面的论证通过引入超复数虚数单位以及对应的周期性,将二项转化为二次,再用二次方程的求根公式,判别是否存在实根,也就是说,是否需要引入无理数的无限连分结构,最后得出判断,二项相加至多只能提供2次的非无理数组合,3次以上则需要至少3项相加才行。