费马大定理简易证明

文章探讨了费马大定理中的一个证明方法,利用超复数理论和虚数单位,解释了为何两个高次幂的整数相加不可能得到同次的整数,揭示了次数限制背后的数学原理:高次幂需要对应数量的整数根相乘,超复数仅能提供2次非无理数组合,三次及更高则需至少3项相加。
摘要由CSDN通过智能技术生成

费马大定理指的是,对于整数,如下方程不可能成立,

现在我们尝试给出一个基于超复数的证明。

首先给出超复数中虚数单位的定义,

其中被视为周期的总长度。因为完成一个周期就相当于再次从0开始,所以它实际上可以被认为就是0在更大范围中观测到的真实值。

现在回到,

时,我们可以写出,

这里体现了虚数单位的作用:虚数单位将二次运算调和为二项乘积,这就提供了其等于某数平方的可能性,尤其体现在二项乘积的两项中加上或者减去的是周期本身的时候。

现在考虑,的情况,

假定如下形式可以成立(不要求t是否为整数,但必须为实数),

将负号替换为

替换为

得到一元二次方程,根据求根公式,

若要有实数解(显然作为周期不可能是任何形式的虚数单位),则判别式,

也就是

若要解中没有无理数(周期必须是有理数),则要求判别式必须是某个整数的平方,也就是说,

(此时由于, ,可知

为了为整数,则本身必须是一个平方数,或者为偶数。

因为引入虚数单位之后的勾股定理,

可以写成,

所以对于平方数而言,的位置可以交换,进而导致的位置也可以交换,所以若要求是平方数,则也必须是平方数,此时退回到勾股定理的形式。

如果为偶数,

此时两边不可能同为整数,因为两者具有无理数的比例数值。

于是剩下最后一种情况,

显然

由此得到,

此时,

的时候,等式显然有整数解,

的时候,等式存在有整数解的可能性,因为

确实可以存在,使得,

所以有,

而当的时候,

即便是,

都是整数可以成立,但是显然不是有理数更不是整数,所以不可能是整数,所以,方程

中必有一个数(比如)不是整数,即,

其中都是整数不可能成立。

总结一下,到底是什么原因,为啥两个超过2次的整数相加不可能得到同次的整数:原因就在于,一个整数的多少次幂就需要多少个整数根相乘。某个整数的3次幂需要3个根相乘,但是2个整数的3次幂相加就算引入多次周期,也无法得出3次幂需要的3个根相乘的效果。所以必须是3个项相加,借助于周期性,才能得到3次幂的效果。否则就要引入更深层的无理数结构,比如无限连分数结果,才能帮助2项实现3次的效果,这时候,至少有一项已经不可能是整数了。

上面的论证通过引入超复数虚数单位以及对应的周期性,将二项转化为二次,再用二次方程的求根公式,判别是否存在实根,也就是说,是否需要引入无理数的无限连分结构,最后得出判断,二项相加至多只能提供2次的非无理数组合,3次以上则需要至少3项相加才行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值