pytorch基础
1.张量
Tensor(张量)类似于NumPy的ndarray,但还可以在GPU上使用来加速计算。
(1)创建一个没有初始化的5*3矩阵
import torch
x = torch.empty(5,3)
print(x)
(2)创建一个随机初始化矩阵
x = torch.rand(5,3)
print(x)
(3)构造一个填满0且数据类型为long的矩阵
x = torch.zeros(5,3,dtype=torch.long)
print(x)
(4)直接从数据构造张量
x = torch.tensor([5.5, 3])
print(x)
(5)根据已有的tensor建立新的tensor。除非用户提供新的值,否则这些方法将重用输入张量的属性。
x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes
print(x)
x = torch.randn_like(x, dtype=torch.float) # 重载 dtype!
print(x) # 结果size一致
2.运算
一种运算有多种语法。在下面的示例中,我们将研究加法运算。
(1)加法:形式一
y = torch.rand(5, 3)
print(y)
print(x + y)
(2)加法:形式二
print(torch.add(x,y))
(3)加法:形式三,给定一个输出张量作为参数
result = torch.empty(5,3)
torch.add(x,y,out=result)
print(result
(4)加法:原位/原地操作(in-place)
任何一个in-place改变张量的操作后面都固定一个_。例如x.copy_(y)、x.t_()将更改x
# adds x to y
y.add_(x)
print(y)
(5)也可以使用像标准的NumPy一样的各种索引操作
print(x[:, 1])
(6)改变形状:如果想改变形状,可以使用torch.view
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
(7)仅包含一个元素的tensor,可以使用.item()来得到对应的python数值
x = torch.randn(1)
print(x)
print(x.item())
3.桥接 NumPy
将一个Torch张量转换为一个NumPy数组是轻而易举的事情,反之亦然。
Torch张量和NumPy数组将共享它们的底层内存位置,因此当一个改变时,另外也会改变。
(1)将torch的Tensor转化为NumPy数组
a = torch.ones(5)
print(a)
b = a.numpy()
print(b)
NumPy数组是如何改变里面的值的:
a = a.add_(1)
print(a)
print(b)
(2)将NumPy数组转化为Torch张量
改变NumPy数组是如何自动改变Torch张量的:
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
4.CUDA上的张量
张量可以使用.to方法移动到任何设备(device)上:
# 当GPU可用时,我们可以运行以下代码
# 我们将使用`torch.device`来将tensor移入和移出GPU
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA device object
y = torch.ones_like(x, device=device) # 直接在GPU上创建tensor
x = x.to(device) # 或者使用`.to("cuda")`方法
z = x + y
print(z)
print(z.to("cpu", torch.double)) # `.to`也能在移动时改变dtype