4、PyTorch教程---神经网络基础知识

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文介绍了神经网络的基本原理,包括人工神经元、激活阈值和权重。讲解了神经网络的典型架构,如隐藏层和完全连接配置,并区分了前馈神经网络与循环神经网络。此外,还提到了如何使用PyTorch构建和训练神经网络的简单步骤。
摘要由CSDN通过智能技术生成

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括若干基本输入,如x1、x2……xn,如果它们的总和大于激活阈值,则产生二进制输出。

下面是样本神经元的示意图 -

生成的输出可以被视为具有激活阈值或偏差的加权和。

Output=∑jwjxj+Bias

典型的神经网络架构如下所述 -

位于输入和输出之间的层被称为隐藏层,而层与层之间的连接密度和类型构成了网络的配置。例如,一个完全连接的配置将层L的所有神经元连接到L+1的神经元。为了更明显地实现局部性,我们可以将只有一个局部邻域,比如九个神经元,连接到下一层。图1-9展示了两个具有密集连接的隐藏层。

各种类型的神经网络如下所述 -

前馈神经网络
前馈神经网络是神经网络家族的基本单元。在这种类型的神经网络中,数据的传递是从输入层经过存在的隐藏层到输出层。一层的输出作为输入层,网络架构中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值