神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括若干基本输入,如x1、x2……xn,如果它们的总和大于激活阈值,则产生二进制输出。
下面是样本神经元的示意图 -
生成的输出可以被视为具有激活阈值或偏差的加权和。
Output=∑jwjxj+Bias
典型的神经网络架构如下所述 -
位于输入和输出之间的层被称为隐藏层,而层与层之间的连接密度和类型构成了网络的配置。例如,一个完全连接的配置将层L的所有神经元连接到L+1的神经元。为了更明显地实现局部性,我们可以将只有一个局部邻域,比如九个神经元,连接到下一层。图1-9展示了两个具有密集连接的隐藏层。
各种类型的神经网络如下所述 -
前馈神经网络
前馈神经网络是神经网络家族的基本单元。在这种类型的神经网络中,数据的传递是从输入层经过存在的隐藏层到输出层。一层的输出作为输入层,网络架构中