test_Train_DL(SPAMS)

博客详细介绍了在DL模型中进行字典学习的过程,通过一系列的测试代码展示如何评估模型效果。首先,使用8X8重叠滑块处理lena图片得到训练数据,接着展示不同阶段的训练结果和字典优化,强调了稀疏约束对字典结构化的影响。
摘要由CSDN通过智能技术生成

子函数(评估模型)

function [ res,obj ] = evaluateModel( X,D,param,printResult )

fprintf('模型评估中...\n');

%% 求解lasso问题
alpha   = mexLasso(X,D,param);                                          % 求解稀疏编码系数
obj     = mean(0.5*sum((X-D*alpha).^2)+param.lambda*sum(abs(alpha)));   % 优化目标函数值
res     = mean(0.5*sum((X-D*alpha).^2));

if printResult == true
    %% 可视化 & 打印结果
    ImD=displayPatches(D);                                              % 可视化字典
    figure(1); imagesc(ImD); colormap('gray');

    fprintf('目标函数: %f\n',obj);
    fprintf('重构残差:%f\n',res);                                       % 重构残差
end

end

测试代码[1]

对lena图片进行8X8的重叠滑块,形成大小为 64×(51281+1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值