集合(德摩根证明)

集合代数

集合 S  T  U S     T     U
S  T=T  S S   ∪   T = T   ∪   S
S (T  U)=(S  T) U S   ∪ ( T   ∪   U ) = ( S   ∪   T ) ∪   U
S (T  U)=(S  T)(S  U) S   ∩ ( T   ∪   U ) = ( S   ∩   T ) ∪ ( S   ∩   U )
S (T  U)=(S  T)(S  U) S   ∪ ( T   ∩   U ) = ( S   ∪   T ) ∩ ( S   ∪   U )
Sc= S c = ∅
(Sc)c=S ( S c ) c = S
S  Sc= S   ∩   S c = ∅
集合 A  B A     B
(AB)c=AcBc ( A ∩ B ) c = A c ∪ B c
(AB)c=AcBc ( A ∪ B ) c = A c ∩ B c
空间  Ω   Ω
S  Ω=S S   ∩   Ω = S
S  Ω=Ω S   ∪   Ω = Ω

德摩根定律

(nSn)c=nScn ( ⋃ n S n ) c = ⋂ n S n c

证明:设  x(nSn)c   x ∈ ( ∪ n S n ) c
     x(nSn)   x ∉ ( ∪ n S n )
   对于任一  n, x Sn   n ,   x ∉   S n
   对于任一  n, xScn   n ,   x ∈ S n c
   即: xnScn,   (nSn)cnScn x ∈ ∩ n S n c ,       ( ∪ n S n ) c ⊂ ∩ n S n c
   另一面,假设  xnScn   x ∈ ∩ n S n c
   对于任一  n, xScn   n ,   x ∈ S n c
   对于任一  n, xSn   n ,   x ∉ S n
   即: xnSn,   x(nSn)c,   nScn(nSn)c x ∉ ∪ n S n ,       x ∈ ( ∪ n S n ) c ,       ∩ n S n c ⊂ ( ∪ n S n ) c
   


(nSn)c=nScn ( ⋂ n S n ) c = ⋃ n S n c

证明:由上条定理可知:
(nScn)c=n(Scn)c ( ⋃ n S n c ) c = ⋂ n ( S n c ) c

 (Sc)c=S   ( S c ) c = S :
(nScn)c=nSn ( ⋃ n S n c ) c = ⋂ n S n

等式两边取补:
nScn=(nSn)c ⋃ n S n c = ( ∩ n S n ) c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值