集合代数
集合
S T U
S
T
U
S ∪ T=T ∪ S
S
∪
T
=
T
∪
S
S ∪(T ∪ U)=(S ∪ T)∪ U
S
∪
(
T
∪
U
)
=
(
S
∪
T
)
∪
U
S ∩(T ∪ U)=(S ∩ T)∪(S ∩ U)
S
∩
(
T
∪
U
)
=
(
S
∩
T
)
∪
(
S
∩
U
)
S ∪(T ∩ U)=(S ∪ T)∩(S ∪ U)
S
∪
(
T
∩
U
)
=
(
S
∪
T
)
∩
(
S
∪
U
)
Sc=∅
S
c
=
∅
(Sc)c=S
(
S
c
)
c
=
S
S ∩ Sc=∅
S
∩
S
c
=
∅
集合
A B
A
B
(A∩B)c=Ac∪Bc
(
A
∩
B
)
c
=
A
c
∪
B
c
(A∪B)c=Ac∩Bc
(
A
∪
B
)
c
=
A
c
∩
B
c
空间
Ω
Ω
S ∩ Ω=S
S
∩
Ω
=
S
S ∪ Ω=Ω
S
∪
Ω
=
Ω
德摩根定律
证明:设 x∈(∪nSn)c x ∈ ( ∪ n S n ) c
x∉(∪nSn) x ∉ ( ∪ n S n )
对于任一 n, x∉ Sn n , x ∉ S n
对于任一 n, x∈Scn n , x ∈ S n c
即: x∈∩nScn, (∪nSn)c⊂∩nScn x ∈ ∩ n S n c , ( ∪ n S n ) c ⊂ ∩ n S n c
另一面,假设 x∈∩nScn x ∈ ∩ n S n c
对于任一 n, x∈Scn n , x ∈ S n c
对于任一 n, x∉Sn n , x ∉ S n
即: x∉∪nSn, x∈(∪nSn)c, ∩nScn⊂(∪nSn)c x ∉ ∪ n S n , x ∈ ( ∪ n S n ) c , ∩ n S n c ⊂ ( ∪ n S n ) c
证明:由上条定理可知:
由 (Sc)c=S ( S c ) c = S :
等式两边取补: