标签平滑(LabelSmoothing)介绍与代码实现

什么是label smoothing?

标签平滑(Label smoothing),像L1L2dropout一样,是机器学习领域的一种正则化方法,通常用于分类问题,目的是防止模型在训练时过于自信地预测标签,改善泛化能力差的问题。

使用label smoothing目的

label smoothing常用于分类任务,防止模型在训练中过拟合,提高模型的泛化能力。

使用label smoothing

class LabelSmoothingCrossEntropy(nn.Module):
    """
    Cross Entropy loss with label smoothing.
    """
    def __init__(self, smoothing=0.1):
        """
        Constructor for the LabelSmoothing module.
        :param smoothing: label smoothing factor
        """
        super(LabelSmoothingCrossEntropy, self).__init__()
        assert 0.0 < smoothing < 1.0
        self.smoothing = smoothing
        self.confidence = 1. - smoothing

    def forward(self, x, target):
        """
        写法1
        """
        # logprobs = F.log_softmax(x, dim=-1)
        # nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
        # nll_loss = nll_loss.squeeze(1)  # 得到交叉熵损失
        # # 注意这里要结合公式来理解,同时留意预测正确的那个类,也有a/K,其中a为平滑因子,K为类别数
        # smooth_loss = -logprobs.mean(dim=1)
        # loss = self.confidence * nll_loss + self.smoothing * smooth_loss
        """
        写法2
        """
        y_hat = torch.softmax(x, dim=1)
        # 这里cross_loss和nll_loss等价
        cross_loss = self.cross_entropy(y_hat, target)
        smooth_loss = -torch.log(y_hat).mean(dim=1)
        # smooth_loss也可以用下面的方法计算,注意loga + logb = log(ab)
        # smooth_loss = -torch.log(torch.prod(y_hat, dim=1)) / y_hat.shape[1]
        loss = self.confidence * cross_loss + self.smoothing * smooth_loss
        return loss.mean()

    def cross_entropy(self, y_hat, y):
        return - torch.log(y_hat[range(len(y_hat)), y])

然后你可能刚开始使用的损失函数是:

lossfunc = nn.CrossEntropyLoss()

只需要改成:

lossfunc = LabelSmoothingCrossEntropy(smoothing=0.1)

即可在你的代码种使用标签平滑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落难Coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值