RLAI读书笔记-第七章-n-Step TD

n-step Bootstraping

7.1 prediction
example P167
大规模的随机行走

T(λ)向前 向后观点
7.2 sarsa control

7.3 off-policy Learning
重要性采样
7.5 off-policy without importantce Sampling

总结
频率启发 frequency Heuristic 将原因归因于频率出现最高的状态
就近启发 recency Heuristic 将原因归因于就近的几次状态

λ收获:
任意n步的reward添加权重 (1-λ)*λ^(n-1)
所以所有步数的权重为 1-λ (1-λ)*λ 。。。。。所有权重加起来的和为1
λ取值区间为[0,1],当λ=1时对应的就是MC算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值