Face R-FCN算法笔记

本文介绍了腾讯AI Lab在R-FCN框架基础上改进的Face R-FCN算法,用于人脸检测。主要改进包括使用更小尺寸的anchor适应小人脸,将RoI Pooling替换为Position-Sensitive Average Pooling,以及采用多尺度训练和在线难例挖掘策略。实验在FDDB和WIDER FACE数据集上展示了优越性能。
摘要由CSDN通过智能技术生成

论文:Detecting Faces Using Region-based Fully Convolutional Networks
链接:https://arxiv.org/abs/1709.05256

腾讯AI Lab的文章,总结起来就是在R-FCN框架上做了一些修改,使其更好地应用在人脸检测上,修改主要包含三个方面,可以看原文的这段话:We improve the R-FCN framework for targeting face detection in three aspects. First, we introduce additional smaller anchors and modify the position sensitive RoI pooling to a smaller size for suiting the detection of the tiny faces. Second, we propose to use position-sensitive average pooling instead of normal average pooling for the last feature voting in R-FCN, which leads to an improved embedding. Third, multi-scale training strategy and on-line Hard Example Mining (OHEM) strategy are adopted for training. In the testing phase, we also ensemble the multi-scale detection results to improve the performance. 可以看出主要是一些trick,比如用更小尺寸的anchor、将原来R-FCN中最后的vote操作由average p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值