格拉姆矩阵(Gram matrix)详细解读

转载:https://www.cnblogs.com/yifanrensheng/p/12862174.html

目录

  • 基础知识-向量的内积
  • Gram matrix介绍
  • Gram matrix的应用-风格迁移

一、基础知识-向量的内积

1.1 向量的内积定义:也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量。
1.2 实例

在这里插入图片描述

a和b的内积公式为:

在这里插入图片描述

1.3 作用
  • a·b>0 方向基本相同,夹角在0°到90°之间
  • a·b=0 正交,相互垂直
  • a·b<0 方向基本相反,夹角在90°到180°之间
Gram矩阵是两两向量的内积组成,所以Gram矩阵可以反映出该组向量中各个向量之间的某种关系。

二、Gram matrix介绍

2.1 定义

n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix),很明显,这是一个对称矩阵。
在这里插入图片描述
更加直观解释:
在这里插入图片描述

2.2 计算和特征表示

输入图像的feature map为[ ch, h, w]。我们经过flatten(即是将hw进行平铺成一维向量)和矩阵转置操作,可以变形为[ ch, hw]和[ h*w, ch]的矩阵。再对两个作内积得到Gram Matrices。 (蓝色条表示每个通道flatten后特征点,最后得到 [ch *ch ]的G矩阵)
在这里插入图片描述

2.3 进一步理解

在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等。

格拉姆矩阵用于度量各个维度自己的特性以及各个维度之间的关系。内积之后得到的多尺度矩阵中,对角线元素提供了不同特征图各自的信息,其余元素提供了不同特征图之间的相关信息。这样一个矩阵,既能体现出有哪些特征,又能体现出不同特征间的紧密程度。

关键点:gram矩阵是计算每个通道 i 的feature map与每个通道 j 的feature map的内积。gram matrix的每个值可以说是代表 I 通道的feature map与 j 通道的feature map的互相关程度。

三、Gram matrix的应用-风格迁移

深度学习中经典的风格迁移大体流程是:

  1. 准备基准图像和风格图像

  2. 使用深层网络分别提取基准图像(加白噪声)和风格图像的特征向量(或者说是特征图feature map)

  3. 分别计算两个图像的特征向量的Gram矩阵,以两个图像的Gram矩阵的差异最小化为优化目标,不断调整基准图像,使风格不断接近目标风格图像

关键的一个是在网络中提取的特征图,一般来说浅层网络提取的是局部的细节纹理特征,深层网络提取的是更抽象的轮廓、大小等信息。这些特征总的结合起来表现出来的感觉就是图像的风格,由这些特征向量计算出来的的Gram矩阵,就可以把图像特征之间隐藏的联系提取出来,也就是各个特征之间的相关性高低。
在这里插入图片描述
如果两个图像的特征向量的Gram矩阵的差异较小,就可以认定这两个图像风格是相近的。有了表示风格的Gram Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。
在这里插入图片描述

总之,就是经过深度卷积学习之后求得的一些特征图(ch个通道),每张特征图里面每个像素点都代表一个详细特征,然后我们使用Gram矩阵方法求得所有特征图对应通道之间的关系,因此认为这样的一个矩阵既可以表示有哪些特征,又可以表示不同特征图之间的关系。因此能表示一个图像的风格特点。

  • 7
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python中,格拉姆角场(Grammian)通常用于处理线性代数中的特征值问题,特别是矩阵的秩和奇异值分解(SVD)。格拉姆矩阵是由原矩阵与其转置相乘得到的,而角场则涉及到矩阵的秩变化情况。以下是一个简单的示例,展示了如何在Python中计算并可视化一个矩阵格拉姆角场: ```python import numpy as np from scipy.linalg import svd import matplotlib.pyplot as plt def gram_schmidt_field(matrix, num_points=100): # 计算格拉姆矩阵 gram = matrix @ matrix.T # SVD分解 u, s, vh = svd(gram) # 创建网格 x, y = np.meshgrid(np.linspace(-1, 1, num_points), np.linspace(-1, 1, num_points)) xy = np.stack([x.flatten(), y.flatten()]) # 将二维点映射到特征向量空间 projected_points = u @ xy # 检查每个点对应的秩 ranks = np.linalg.matrix_rank(projected_points, tol=1e-6, hermitian=True) # 归一化并绘制 scaled_ranks = (ranks - ranks.min()) / (ranks.max() - ranks.min()) plt.imshow(scaled_ranks.reshape(num_points, num_points), cmap='hot', extent=(-1, 1, -1, 1)) plt.xlabel('Column Index') plt.ylabel('Row Index') plt.title('Gauss-Newton Field for Matrix') plt.colorbar() plt.show() # 示例用法 matrix = np.random.rand(10, 10) # 假设这是一个10x10的随机矩阵 gram_schmidt_field(matrix) ``` 这个代码首先计算给定矩阵格拉姆矩阵,然后通过奇异值分解(SVD)找到它的左奇异向量。之后,它将二维坐标点映射到这些奇异向量的空间,并计算每个点对应的小秩区域,最终可视化为热力图。 相关问题: 1. SVD在格拉姆角场中起到了什么作用? 2. 如何理解矩阵秩在格拉姆角场中的意义? 3. 在实际问题中,使用格拉姆角场有什么应用场景?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值