知乎三角猫frank对于这块内容写的非常好,但这个输入的构造还是很难过于没头没尾
数学好的人,可能看一眼根据形式就能推出gramian的构造,但对我这种比较钻牛角尖的人,我就想有一个逻辑链条——gramian是怎么被构造出来的?
我们回到问题本身,就以能控性为例子(和上面的rechability不太一样)
这里的
x
(
0
)
x(0)
x(0)是任意一个n维的向量 我们想找一个条件,让这个等式成立
也就是找一个可控的充分条件
显然我们只能从
u
(
τ
)
u(\tau)
u(τ)下手,通过构造适当的
u
(
τ
)
u(\tau)
u(τ),让系统能够回到零状态,也就是能控
对于控制输入,我们知道自动控制里 要么是开环 要么是闭环
对于一般的系统,我们先尝试用状态反馈进行闭环控制
如果是闭环,那么控制输入
u
m
×
1
u_{m\times 1}
um×1应该长成这样
u ( τ ) = u ( τ , x ) = u ( τ , x ( τ ) ) u(\tau) = u(\tau,x) = u(\tau,x(\tau)) u(τ)=u(τ,x)=u(τ,x(τ))
因此状态反馈的输入可以尝试用
u
(
τ
)
=
−
A
x
(
τ
)
u(\tau) = -Ax(\tau)
u(τ)=−Ax(τ)
或者
u
(
τ
)
=
−
e
A
τ
x
(
τ
)
u(\tau) = -e^{A\tau}x(\tau)
u(τ)=−eAτx(τ)
但是这样维数对不上, u ( τ ) = − A x ( τ ) u(\tau) = -Ax(\tau) u(τ)=−Ax(τ) 是 n × 1 n\times 1 n×1的向量
因此你可能会想引入
B
n
×
m
B_{n \times m}
Bn×m
让输入变成一个
m
×
1
m\times 1
m×1的向量
也就是
u
(
τ
)
=
−
B
∗
A
x
(
τ
)
u(\tau) = -B^*Ax(\tau)
u(τ)=−B∗Ax(τ)
或者
u
(
τ
)
=
−
B
∗
e
A
τ
x
(
τ
)
u(\tau) = -B^*e^{A\tau}x(\tau)
u(τ)=−B∗eAτx(τ)
既然你都转置了一个,那不如就
u
(
τ
)
=
−
B
∗
A
∗
x
(
τ
)
u(\tau) = -B^*A^*x(\tau)
u(τ)=−B∗A∗x(τ)
或者
u
(
τ
)
=
−
B
∗
e
A
∗
τ
x
(
τ
)
u(\tau) = -B^*e^{A^*\tau}x(\tau)
u(τ)=−B∗eA∗τx(τ)
那干脆就用
u
(
τ
)
=
−
B
∗
e
A
∗
τ
x
(
τ
)
u(\tau) = -B^*e^{A^*\tau}x(\tau)
u(τ)=−B∗eA∗τx(τ)
x
(
0
)
=
∫
e
−
A
τ
B
B
∗
e
A
∗
τ
x
(
τ
)
d
τ
x(0) = \int e^{-A\tau} BB^*e^{A^*\tau}x(\tau) d \tau
x(0)=∫e−AτBB∗eA∗τx(τ)dτ
为了对称,不如写成
x
(
0
)
=
∫
e
−
A
τ
B
B
∗
e
−
A
∗
τ
x
(
τ
)
d
τ
x(0) = \int e^{-A\tau} BB^*e^{-A^*\tau}x(\tau) d \tau
x(0)=∫e−AτBB∗e−A∗τx(τ)dτ
但这样有一个问题,你从这里的不出任何有用的结果
但如果视为开环控制 把
x
(
τ
)
x(\tau)
x(τ)视为一个常向量
y
y
y
x
(
0
)
=
∫
e
−
A
τ
B
B
∗
e
−
A
∗
τ
y
d
τ
=
[
∫
e
−
A
τ
B
B
∗
e
−
A
∗
τ
d
τ
]
y
x(0) = \int e^{-A\tau} BB^*e^{-A^*\tau}y d \tau = [\int e^{-A\tau} BB^*e^{-A^*\tau} d \tau ] y
x(0)=∫e−AτBB∗e−A∗τydτ=[∫e−AτBB∗e−A∗τdτ]y
由于 y y y是任取的,那我们现在就得到了一个充分条件(注意 必要性还得不到)
即如果
W
=
∫
e
−
A
τ
B
B
∗
e
−
A
∗
τ
d
τ
W = \int e^{-A\tau} BB^*e^{-A^*\tau} d \tau
W=∫e−AτBB∗e−A∗τdτ是一个非奇异矩阵(
n
×
n
n \times n
n×n)
则系统可控
为什么叫它格拉姆矩阵
因为一般格拉姆矩阵就是长这个样子 先内积再积分
这个只是一个特定的格拉姆矩阵形式
ok,那么你得到了充分性条件,而这个条件的必要性竟然很容易验证
怎么验证呢…显然最常用的手段就是反证法(一般验证充分条件必要性的方法)
就是说,你假设可控,但这个你构造出来的格拉姆矩阵是奇异的,然后会导致矛盾,具体的就不说了,大家可以自己证明.
然后你发现真的矛盾,也就是说
你偶然间发现了一个可控性的充要条件,一篇TAC到手