线性空间

引言

       矩阵是一种线性操作,用于“线性系统中线性算子在基下的一种数量表示”,数学是一种抽象,透过抽象概念掌握矩阵本质,对基本的线性运算理解起到重要作用。因此研究矩阵的作用,演变为对抽象的线性算子的研究。线性空间是集合在线性运算下所表现出来的共性加以概括而成的数学概念,线性算子则是用来研究线性空间之间关系的主要工具。线性空间和线性算子是本文主要讨论的对象。

1.背景:

       在谈论线性空间之前先讨论一下线性空间的取值,比如在实数域,复数域、有理数等等。这些都是数域。有了数域就可以在其上建立线性空间。所谓的线性空间就是是线性代数中n维向量空间的抽象和推广,为了便于理解这个抽象概念,我们回顾一下n维向量空间的向量加法和数的向量乘法,然后把具体的运算抽象概括为线性空间。

在n维向量空间
K n = { α = ( a 1 , a 2 , ⋯   , a n ) ∣ a i ∈ R } K^n=\{ \alpha=(a_1,a_2,\cdots, a_n)|a_i \in \mathbb{R}\} Kn={α=(a1,a2,,an)aiR}
中,向量 α \alpha α是有序数组,且对向量的加法及数乘是封闭的,所谓封闭指的是运算结果仍为 K n K^n Kn的向量。且满足8条性质:
(1)     α + β = β + α ( 加 法 交 换 律 ) \bm \alpha+\bm\beta=\bm\beta+\bm\alpha \qquad (加法交换律) α+β=β+α()
(2)     ( α + β ) + γ = α + ( β + γ ) ( 加 法 结 合 律 ) (\bm \alpha+\bm\beta)+\bm\gamma=\bm\alpha+(\bm\beta+\bm\gamma)\qquad(加法结合律) (α+β)+γ=α+(β+γ)()
(3)     α + 0 = α ( 0 元 存 在 性 ) \bm\alpha+\bm 0=\bm\alpha \qquad(0元存在性) α+0=α(0
(4)     α + ( − α ) = 0 ( 存 在 负 向 量 ) \bm\alpha+(-\bm \alpha)=\bm 0 \qquad(存在负向量) α+(α)=0(
(5)     λ ( α + β ) = λ α + λ β ( 数 因 子 分 配 律 ) \lambda(\bm\alpha+\bm \beta)=\lambda \bm\alpha+\lambda\bm \beta \qquad(数因子分配律) λ(α+β)=λα+λβ(
(6)     ( λ + μ ) α = λ α + μ α ( 分 配 律 ) (\lambda+\mu)\bm\alpha=\lambda \bm\alpha+\mu\bm\alpha \qquad(分配律) λ+μ)α=λα+μα(
(7)     λ ( μ α ) = ( λ μ ) α ( 数 因 子 结 合 律 ) \lambda(\mu\bm\alpha)=(\lambda \mu)\bm\alpha \qquad(数因子结合律) λ(μα)=(λμ)α(
(8)     1 ⋅ α = α ( 单 位 元 ) \bm 1\cdot\bm\alpha=\bm\alpha \qquad(单位元) 1α=α(

例1 \quad 以实数为系数,次数不超过n的一元多项式的全体(包括0),记作: P [ x ] n = { a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 ∣ a i ∈ R } P[x]_n=\{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0|a_i\in\mathbb{R}\} P[x]n={anxn+an1xn1++a1x+a0aiR}按多项式加法及数与元素相乘规则,则 P [ x ] n P[x]_n P[x]n不仅在上述运算下封闭,而且满足以上8条性质。

例2 \quad 常系数二阶齐次线性微分方程 y ′ ′ − 3 y ′ + 2 y = 0 y''-3y'+2y=0 y3y+2y=0的解的集合 Y = { a e 2 x + b e x ∣ a , b ∈ R } Y=\{ae^{2x}+be^x|a,b\in\mathbb{R}\} Y={ae2x+bexa,bR}满足封闭性和8条性质

例3 \quad 所有的n阶实矩阵的集合记为 R n × n \mathbb{R^{n \times n}} Rn×n,如果 A , B ∈ R n × n , 则 A + B ∈ R n × n , 如 果 k ∈ R , 则 k A ∈ R n × n A,B \in\mathbb{R^{n\times n}},则A+B\in \mathbb{R^{n\times n}},如果k\in \mathbb{R},则kA\in \mathbb{R^{n\times n}} A,BRn×nA+BRn×nkR,kARn×n。集合对加和数乘运算封闭,满足8条性质

把所有这些满足加、数乘运算封闭且满足8条性质的集合对象抽象为一般化的概念:线性空间


2.定义:

设V是非空集合,P是一个数域,如果V满足下面条件:
a.在V中定义一个封闭的加法运算,即 x , y ∈ V x,y\in V x,yV,有 x + y ∈ V x+y\in V x+yV,对于 x , y , z ∈ V x,y,z\in V x,y,zV加法满足4条性质:
1. x + y = y + x ( 交 换 律 ) x+y=y+x\quad \quad\quad\quad\quad\quad (交换律) x+y=y+x(
2. x + ( y + z ) = ( x + y ) + z ( 结 合 律 ) x+(y+z)=(x+y)+z\quad (结合律) x+(y+z)=(x+y)+z(
3. x + 0 = x x+0=x x+0=x             (0元存在性)
4. x + ( − x ) = 0 x+(-x)=0 x+(x)=0      (逆元存在性)
b.在V中定义一个封闭的数乘运算,即 x ∈ V , λ ∈ F , 有 唯 一 元 素 λ x ∈ V x\in V,\lambda\in \mathbb{F},有唯一元素\lambda x\in V xV,λF,λxV且数乘运算也需要满足下面4条性质
1. ( λ + μ ) x = λ x + μ x ( 分 配 律 ) (\lambda+\mu)x=\lambda x+\mu x\quad\quad (分配律) (λ+μ)x=λx+μx(
2. λ ( x + y ) = λ x + λ y ( 数 因 子 分 配 律 ) \lambda(x+y)=\lambda x+\lambda y\quad\quad (数因子分配律) λ(x+y)=λx+λy(
3. λ ( μ x ) = ( λ μ ) x \lambda(\mu x)=(\lambda\mu)x λ(μx)=(λμ)x             (结合律)
4. 1 x = x 1x=x\quad \quad\quad\quad\quad 1x=x      (单位元存在性)

其中 F \mathbb{F} F表示数域。
满足上述条件的V称为数域 F \mathbb{F} F上的线性空间,上述8条性质称为线性运算,定义了线性运算的集合,就称为线性空间。
线性空间是由集合与运算所定义的,所以验证一个空间是否为线性空间既要验证集合封闭性,也要验证运算的8条性质。

有了抽象的线性空间,我们怎么使用呢?对于有限个向量组成的空间,运算往往不容易封闭,而一般化的线性空间是由无限个向量组成。这带来两个方面的问题:(1)无限个向量是否能由有限个向量表示,(2)线性空间中的抽象向量如何与具体数组向量联系。
为了回答这两个问题,首先要考虑线性相关性基本意义。线性相关是指:给定一组向量 a 1 , a 2 , a 3 , . . . , a n ∈ V a_1,a_2,a_3,...,a_n\in V a1,a2,a3,...,anV,以及一组数 k 1 , k 2 , . . . . , k n ∈ F k_1,k_2,....,k_n\in\mathbb{F} k1,k2,....,knF那么向量 x = k 1 a 1 + k 2 a 2 + . . . + k n a n x=k_1a_1+k_2a_2+...+k_na_n x=k1a1+k2a2+...+knan称为向量 x x x的线性组合。如果上式组合存在不全为0的 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn,使得 x = 0 x=0 x=0,则称向量 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an为线性相关的。所以有限个向量构成的线性空间需要向量组满足线性无关性,这就引出下面的概念。

3.基、维数:

定义:
设V是数域 F \mathbb{F} F上的线性空间, x 1 , x 2 , ⋯   , x n ∈ V x_1,x_2,\cdots,x_n\in V x1,x2,,xnV为线性空间上的n个向量,如果,
(1) x 1 , x 2 , ⋯   , x n 线 性 无 关 x_1,x_2,\cdots,x_n线性无关 x1,x2,,xn线
(2) V 上 的 任 意 向 量 都 可 由 x 1 , x 2 , ⋯   , x n 线 性 表 示 V上的任意向量都可由x_1,x_2,\cdots,x_n线性表示 Vx1,x2,,xn线
则称n个向量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是线性空间V的一组基。线性空间 V V V所含的基向量的个数n,称为维数,记作 d i m V = n dimV=n dimV=n V V V为n维线性空间,简记为 V n V^n Vn

有了基,维数,我们看看一些简单的例子,考虑线性空间 P [ x ] n P[x]_n P[x]n,多项式 f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n , 在 基 1 , x , x 2 , ⋯   , x n 下 的 坐 标 就 是 它 的 系 数 构 成 的 行 向 量 ( a 0 , a 1 , ⋯   , a n ) , 若 在 f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n,在基1,x,x^2,\cdots,x^n下的坐标就是它的系数构成的行向量(a_0,a_1,\cdots,a_n),若在 f(x)=a0+a1x+a2x2++anxn1,x,x2,,xn(a0,a1,,an), V n 中 取 令 一 组 基 V^n中取令一组基 Vn
1 , ( x − a ) , ( x − a ) 2 , ( x − a ) 3 , ( x − a ) 4 , ⋯   , ( x − a ) n 1,(x-a),(x-a)^2,(x-a)^3,(x-a)^4,\cdots,(x-a)^n 1,(xa),(xa)2,(xa)3,(xa)4,,(xa)n
则多项式 f ( x ) f(x) f(x)按n阶泰勒展开式表示为:
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f n ( a ) n ! ( x − a ) n f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^n(a)}{n!}(x-a)^n f(x)=f(a)+f(a)(xa)+2!f(a)(xa)2++n!fn(a)(xa)n
因此 f ( x ) 在 新 的 一 组 基 下 的 坐 标 是 ( f ( a ) , f ′ ( a ) , f ′ ′ ( a ) 2 ! , ⋯   , f n ( a ) n ! ) f(x)在新的一组基下的坐标是(f(a),f'(a),\frac{f''(a)}{2!},\cdots,\frac{f^n(a)}{n!}) f(x)(f(a),f(a),2!f(a),,n!fn(a))
线性空间在不同基下坐标是不同的,这就引出基变换问题,也就是说线性空间 V n V^n Vn,假设 V n V^n Vn的两组基为A,B,基下的坐标分别为 X X X, Y Y Y,则线性空间 V n V^n Vn中的一个向量C可由两组基分别表示 C = A X = B Y C=AX=BY C=AX=BY,且基 A A A也由基 B B B表示, A = B G A=BG A=BG其中 G G G被称为过渡矩阵,由此得出
A X = B G X = B Y AX=BGX=BY AX=BGX=BY ⇒ Y = G X \Rightarrow Y=GX Y=GX
得到基的坐标变换公式




线性算子:

为了进一步研究线性空间之间的关系,引入线性算子的概念,线性算子是线性空间关系的描述。
定义:
设两个集合 M 和 M ′ \color{Red}M和M' MM,对于 x ∈ M x\in M xM中,存在某种运算法则 A \mathscr A A,在 M ′ 中 有 对 应 确 定 的 x ′ M'中有对应确定的x' Mx,称这种 A 为 从 M 到 M ′ 的 映 射 或 者 算 子 记 作 A : M → M ′ \mathscr A为从M到M'的{\color{Red}\bold 映射或者算子}记作\mathscr A:M\rightarrow M' AMMA:MM
此时, x ′ 叫 做 x 在 A 下 的 像 , x 叫 做 x ′ 的 原 像 , M 是 A 的 定 义 域 , x ′ 全 体 构 成 A 的 值 域 , 记 为 A ( M ) , 由 定 义 可 知 A ( M ) ⊆ M ′ 。 x'叫做x在\mathscr A下的像,x叫做x'的原像,M 是\mathscr A的定义域,x'全体构成\mathscr A的值域,记为\mathscr A(M),由定义可知\mathscr A(M)\subseteq M'。 xxAxx,MAxAA(M)A(M)M

线性函数 f ( x ) f(x) f(x)满足:
(1) f ( x + y ) = f ( x ) + f ( y ) 线 性 可 加 性 f(x+y)=f(x)+f(y)\qquad 线性可加性 f(x+y)=f(x)+f(y)线
(2) f ( k x ) = k f ( x ) 齐 次 性 f(kx)=kf(x)\qquad 齐次性 f(kx)=kf(x)

把上述满足2个条件的线性函数推广成自变量为向量的算子,就是线性算子。
定义:
V 1 , V 2 V_1,V_2 V1,V2是两个线性空间,则 A : V 1 → V 2 \mathscr A:V_1\rightarrow V_2 A:V1V2表示算子,如果对于 V 1 V_1 V1中的元素 x 1 , x 2 x_1,x_2 x1,x2,满足:
A ( x 1 + x 2 ) = A ( x 1 ) + A ( x 2 ) \mathscr A(x_1+x_2)=\mathscr A(x_1)+\mathscr A(x_2) A(x1+x2)=A(x1)+A(x2)
A ( λ x 1 ) = λ A ( x 1 ) \mathscr A(\lambda x_1)=\lambda \mathscr A(x_1) A(λx1)=λA(x1)
A : V 1 \mathscr A:V_1 A:V1 V 2 V_2 V2 的线性算子。

在线性空间 P [ x ] n P[x]_n P[x]n中,微分算子是一个线性算子,这个算子通常用 D \mathscr D D表示,比如 f ( x ) f(x) f(x)是线性空间 P [ x ] n P[x]_n P[x]n中的一个元素(函数),则 D ( f ( x ) ) = f ′ ( x ) \mathscr D(f(x))=f'(x) D(f(x))=f(x),对于两个函数 f ( x ) , g ( x ) ∈ P [ x ] n f(x),g(x)\in P[x]_n f(x),g(x)P[x]n以及 λ 1 , λ 2 ∈ R \lambda_1,\lambda_2\in \mathbb{R} λ1,λ2R,满足关系:
D ( λ 1 f ( x ) + λ 2 g ( x ) ) = λ 1 D ( f ( x ) ) + λ 2 D ( g ( x ) ) \mathscr D(\lambda_1f(x)+\lambda_2g(x))=\lambda_1\mathscr D(f(x))+\lambda_2\mathscr D(g(x)) D(λ1f(x)+λ2g(x))=λ1D(f(x))+λ2D(g(x))

A \mathscr A A是由 V → V ′ V\rightarrow V' VV的线性算子,且是双射,那么称 A \mathscr A A V V V V ′ V' V的同构算子。
同构概念的引入给研究线性空间带来方便,不同的线性空间只要同构,就可以转化到方便的向量空间中研究。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值