矩阵基础知识--------通俗易懂之----矩阵的特征向量和特征值

在开始之前,我们先看有一组例子:

我们若有矩阵A:\begin{bmatrix} 1&2 \\ 1&1 \end{bmatrix} ,和一个向量v\begin{bmatrix} 1\\ 0 \end{bmatrix}, 若我们不断用矩阵A来左乘v,输出的结果会有什么样的特点呢?我们来看看:

\begin{bmatrix} 1 &2 \\ 1&1 \end{bmatrix}\times \begin{bmatrix} 1\\0 \end{bmatrix}=\begin{bmatrix} 1\\1 \end{bmatrix}

\begin{bmatrix} 1 &2 \\ 1&1 \end{bmatrix}\times \begin{bmatrix} 1\\1 \end{bmatrix}=\begin{bmatrix} 3\\2 \end{bmatrix}

\begin{bmatrix} 1 &2 \\ 1&1 \end{bmatrix}\times \begin{bmatrix} 3\\2\end{bmatrix}=\begin{bmatrix} 7\\5 \end{bmatrix}

\begin{bmatrix} 1 &2 \\ 1&1 \end{bmatrix}\times \begin{bmatrix} 7\\5\end{bmatrix}=\begin{bmatrix} 17\\12 \end{bmatrix}

我们看看用矩阵A左乘四次的向量可视化出来是什么的结果:

蓝色是向量v,黑色是向量v不断用矩阵A左乘出来的向量。我们可以看到,左乘出来的向量会不断接近一个向量方向,这个方向,就是矩阵A的特征向量的方向。蓝色是向量v。红色是计算出来的特征向量。

如上图所示的两条红色向量,把他们无限延长,会形成一个“X”,这个红色的X就是所谓的矩阵的特征空间。

看到这里也许有同学会问,特征向量是两条,为什么只会不断拟合其中一条?因为这是跟特征向量对应的特征值有关的,用矩阵不断乘一个向量,只会拟合到特征值最大的特征向量

 

然后我们来看看特征向量和特征值的关系:

若矩阵A与它的特征向量v相乘,那么就会完全等于A的特征值与A的特征向量相乘。(特征值为常数)

所以对于一个矩阵而言,它的特征值和特征向量是它的本质。我们看一下下图:

红色向量为矩阵A的特征向量v,黑色向量为矩阵A乘A的特征向量Av。

那么综合上面所有信息我们可以知道

任意一个向量v,它经过数次与矩阵A相乘,得到的向量Av会几乎和矩阵A的特征向量方向相同。这时候,可以把Av看作A的特征向量,那么再继续用矩阵A乘的时候,得到的向量方向就不变了,变化的只有长度,长度为原来的长度乘特征值。

实验:

用特征值为2的矩阵A,不断左乘某个向量b,看看得到向量的长度是不是2的倍数:

A = np.array([ #特征值为2
    [2,0],
    [0,2]
])
eigenvalue,featurevector=np.linalg.eig(A)
print(eigenvalue)
b = np.array([
    [2],
    [1]
])
b = np.matmul(A,b)
print(np.sqrt(b[0]**2+b[1]**2)) #[4.47213595]
b = np.matmul(A,b)
print(np.sqrt(b[0]**2+b[1]**2)) #[8.94427191]
b = np.matmul(A,b)
print(np.sqrt(b[0]**2+b[1]**2)) #[17.88854382]
b = np.matmul(A,b)
print(np.sqrt(b[0]**2+b[1]**2)) #[35.77708764]
b = np.matmul(A,b)
print(np.sqrt(b[0]**2+b[1]**2)) #[71.55417528]

我们可以看到,结论符合。所以如果矩阵A的特征值为1的话,那么不断左乘的话,得到的结果也是不会变的。

 

具体例子说明:

我们可以把矩阵A看作是一个运动。A表示了运动的方向(特征向量)和运动的速度(特征值)。如果一个向量b被这个矩阵A左乘,那么b就会往矩阵A所规定的方向和速度运行。A乘了b多少次,就是b以A规定的方向和速度运行了多少秒。

 

 

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《矩阵分析引论第5版PDF》是一本关于矩阵分析的教材,帮助读者理解和应用线性代数和矩阵理论的基本概念和方法。 这本教材内容丰富,结构清晰。首先,它通过引入矩阵及其运算的定义和基本性质,建立了读者对矩阵的基本认识。然后,作者介绍了矩阵空间和线性变换的概念,并讨论了矩阵特征值特征向量以及其在线性代数中的重要性。 在之后的章节中,教材涵盖了矩阵的分解、正交性质、特征子空间以及正定矩阵等主题,深入探讨了这些概念的数学原理和应用。 此外,《矩阵分析引论第5版PDF》还给出了大量的例题和习题,使得读者可以通过解题来加深对理论的理解,并提供了答案和解答技巧以供参考。 总的来说,这本书在内容和形式上都非常全面和详细。它适合作为矩阵分析的教材供学生学习,也适合作为参考书供研究者和工程师在实际问题中应用矩阵分析方法。 《矩阵分析引论第5版PDF》的出现丰富了矩阵分析领域的教材资源,为读者提供了一个系统学习矩阵分析知识的机会。希望读者能够通过阅读和学习,掌握矩阵分析的基本理论和应用,从而在数学、物理、工程等领域中具有更好的应用能力。 ### 回答2: 《矩阵分析引论第5版》是关于矩阵分析的一本教材,以PDF的形式提供。本教材是矩阵分析的入门书籍,作者通过详细的讲解和例题的演示,系统地介绍了矩阵分析的基本概念、理论和应用。 本书主要内容分为六个部分:矩阵的基本概念和运算、矩阵的代数性质、行列式和特征值、线性方程组和矩阵的分解、正交投影与最小二乘、对称和正定矩阵。 在第一部分中,作者阐述了矩阵的定义和基本运算,包括矩阵的加法、乘法、转置等。第二部分讨论了矩阵的代数性质,如矩阵的幂、逆矩阵、行列式等。 第三部分介绍了矩阵特征值特征向量的计算方法,以及特征值特征向量矩阵分析中的应用。 第四部分讲解了线性方程组和矩阵的分解,包括LU分解、QR分解、Schur分解等。 第五部分重点介绍了正交投影和最小二乘问题,以及它们在数据分析和信号处理中的应用。 最后一部分介绍了对称和正定矩阵的性质和应用,包括矩阵的对角化、特征值分解等。 《矩阵分析引论第5版》以简明扼要的语言、通俗易懂的示例,为读者提供了一个全面系统的矩阵分析学习资料。无论是研究领域还是工作中,几乎所有与矩阵有关的问题都能在本书中找到解答。对于希望深入了解矩阵分析的读者,这本书是一本不可多得的参考读物。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值