矩阵的特征向量是与特征值相对应的非零向量,它们满足以下特征值方程:
Av=λv
其中,A 是一个方阵,v是特征向量,λ 是对应的特征值。求解特征向量通常涉及以下步骤:
-
求特征值:
- 计算矩阵 A的特征多项式,即 det(A−λI)=0,其中 I 是单位矩阵。
- 解特征多项式方程,得到特征值 λ。
-
求特征向量:
- 对于每个特征值 λ,将其代入方程 (A−λI)v=0。
- 解这个线性方程组,找到非零解 v。这些非零解就是对应于特征值 λ 的特征向量。
具体步骤如下:
步骤 1:计算特征多项式
对于给定的 n×n 矩阵 A,计算特征多项式:
det(A−λI)=0
这将给出一个关于 λ 的 n 次多项式。
步骤 2:求解特征值
解特征多项式方程,找到 的值。这些值就是矩阵 A 的特征值。
步骤 3:求解特征向量
对于每个特征值 :
- 构造矩阵
。
- 解线性方程组
。
- 找到非零解 v,这些解就是对应于特征值
的特征向量。
其中,齐次线性方程组的解法参考齐次线性方程组通解的求解方法。
注意:
- 如果 A 是一个 n×n 矩阵,那么它最多有 n 个特征值(考虑重数)。
- 对于每个特征值,可能存在多个线性无关的特征向量。
- 如果矩阵 A 不可对角化,那么它可能没有 n 个线性无关的特征向量。
- 在实际计算中,可以使用数值方法来求解特征值和特征向量,例如幂迭代法、QR算法等。
在Python中,可以使用NumPy库中的numpy.linalg.eig
函数来计算矩阵的特征值和特征向量:
import numpy as np
# 定义矩阵 A
A = np.array([[1, 2], [3, 4]])
# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(A)
print("特征值:", eigenvalues)
print("特征向量:", eigenvectors)
这段代码将输出矩阵 A 的特征值和对应的特征向量。