OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal
基于深度学习的方法在去除单个JPEG伪影任务中表现出了显著的性能。然而,现有方法在处理双重JPEG图像时往往会退化,而这类图像在真实场景中普遍存在。
本文提出了一种用于去除双重JPEG伪影的偏移感知分区Transformer,称为OAPT。本文对双重JPEG压缩进行了分析,发现每个8x8块内最多会出现四种模式,并设计了我们的模型以聚类相似模式来克服恢复难度。
OAPT由两部分组成:压缩偏移预测器和图像重建器。具体来说,预测器估计第一次和第二次压缩之间的像素偏移量,然后利用这些偏移量来区分不同的模式。重建器主要基于多个混合分区注意力块(HPAB),该块结合了基于窗口的自注意力和稀疏注意力来处理聚类模式特征。
大量实验表明,在双重JPEG图像恢复任务中,OAPT的性能优于最先进的方法,高出0.16dB以上。此外,在不增加任何计算成本的情况下,HPAB中的模式聚类模块可以作为插件来增强其他基于Transformer的图像恢复方法。
问题描述
与单次压缩相比,双JPEG压缩在现实场景中更为常见,因为互联网上的图像通常会经历多个压缩周期[14, 28, 40, 62]。例如,如图1(a)所示,一张新拍摄的照片在首次压缩后存储在相机的磁盘中,之后在图像编辑(如裁剪)或上传到社交媒体云服务器时,会进行第二次压缩,从而成为双压缩图像。随着上述过程的重复发生,自然会产生多压缩图像。
然而,大多数以前的方法都是在单次压缩数据上进行训练的,并且只考虑了质量因子(QF)的范围,