模型finetuning


pytorch

http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

http://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/

https://github.com/Cadene/pretrained-models.pytorch

https://github.com/Spandan-Madan/Pytorch_fine_tuning_Tutorial

https://github.com/ry85/finetuning---PyTorch/blob/master/main.ipynb

https://github.com/gmayday1997/pytorch_CAM

https://discuss.pytorch.org/t/how-to-perform-finetuning-in-pytorch/419

https://github.com/ivanlai/Kaggle-Planet-Amazon

https://github.com/bearpaw/pytorch-classification

https://github.com/maxgreat/Instance-Search/blob/master/TrainClassif.py


pytorch model 转tensorflow

https://github.com/leonidk/pytorch-tf




caffe

caffe的一些经典网络的实现


https://github.com/cvjena/cnn-models

https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py

https://github.com/flyyufelix/cnn_finetune

https://flyyufelix.github.io/2016/10/08/fine-tuning-in-keras-part2.html


inception v3

tensorflow pretrained model

https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py

https://github.com/conan7882/GoogLeNet-Inception-tensorflow


vgg16

https://github.com/EKami/planet-amazon-deforestation/blob/master/src/vgg16.py

https://github.com/tflearn/models

https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py

https://github.com/conan7882/VGG-tensorflow

TensorFlow VGG-16 预训练模型

https://github.com/ry/tensorflow-vgg16



resnet

https://github.com/ry/tensorflow-resnet

Tensorflow使用的预训练的resnet_v2_50,resnet_v2_101,resnet_v2_152等模型预测,训练

学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)


caffe Resnet-50 finetune 所有代码+需要注意的地方

利用caffe pre-trained model进行图像分类

Tensorflow学习笔记--使用迁移学习做自己的图像分类器(Inception v3)



github上tensorflow预训练模型下载链接



tensorflow Image_retrain

MobileNet训练分类网

TensorFlow学习笔记之源码分析(3)---- retrain.py

基于Inception v3进行单标签训练

tensorflow/tensorflow/example/image_retraining/retrain.py目录下执行

python retrain.py --image_dir /home/hj/body_part_classify/data/train/ --intermediate_store_frequency 1000 --how_many_training_steps 50000 --learning_rate 0.001 --train_batch_size 8 --testing_percentage 20 --eval_step_interval 20 --architecture mobilenet_1.0_224 --output_graph  /home/hj/tf-study/fine-tuning/output_graph.pb --intermediate_output_graphs_dir /home/hj/tf-study/fine-tuning/intermediate_graph --output_labels /home/hj/tf-study/fine-tuning/output_labels.txt --model_dir  /home/hj/tf-study/fine-tuning/imagenet --val_batch_size -1



利用tf-slim

使用TensorFlow-Slim进行图像分类



keras

keras入门 ---在预训练好网络模型上进行fine-tune

keras系列︱图像多分类训练与利用bottleneck features进行微调(三)

https://github.com/flyyufelix/cnn_finetune




各种模型转换

https://github.com/Microsoft/MMdnn

https://github.com/leonidk/pytorch-tf



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值