点击打开链接http://acm.hdu.edu.cn/showproblem.php?pid=2569
设当悬崖的长度为n时,到达彼岸的方法有F[n]种。
显然,F[1] = 3, F[2] = 9, F[3] = 21 假设已知F[n-1]与F[n-2],寻求F[n]与F[n-1]、F[n-2]之间的关系。
分为两种情况:
(1)第n-2段与n-1段颜色相同,则第n段可以为三种颜色的任意一种:
F[n-2] * 3
(2)第n-2段与n-1段颜色不同,第n段只能为其中的两种颜色:
(F[n-1] - F[n-2]) * 2
故,总的方法数为:F[n-2] * 3 + (F[n-1] - F[n-2]) * 2 = F[n-1] * 2 + F[n-2]
#include<stdio.h>
int main()
{
int t,i,n;
__int64 a[41]={0,3,9,21};
for(i=4;i<41;i++)
{
a[i]=2*a[i-1]+a[i-2];
}
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%I64d\n",a[n]);
}
return 0;
}