【AI视野·今日CV 计算机视觉论文速览 第202期】Thu, 20 May 2021

AI视野·今日CS.CV 计算机视觉论文速览
Thu, 20 May 2021
Totally 47 papers
👉上期速览更多精彩请移步主页

在这里插入图片描述

Interesting:

📚PPR10k, 大规模人像修图数据集 (from 香港理工 达摩院)
在这里插入图片描述
在这里插入图片描述

link:https://github.com/csjliang/PPR10K

📚大规模室内定位数据集, (from NAVER LABS)
在这里插入图片描述

https://naverlabs.com/datasets

📚单层transformer, (from 丹麦奥尔胡斯大学 )
在这里插入图片描述


📚Fusion-DHL多模态融合的室内环境定位算法, (from Sookmyung Women’s University )

在这里插入图片描述


📚Real-Time Video Super-Resolution on Smartphones, (from Mobile AI 2021 Challenge )
在这里插入图片描述在这里插入图片描述

link:https://ai-benchmark.com/workshops/mai/2021/


Daily Computer Vision Papers

Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?
Authors Zhisheng Xiao, Qing Yan, Yali Amit
无监督的异常检测,预测测试样本是一个异常值或仅使用来自未标识的Inlier数据的信息,是一个重要但具有挑战性的任务。最近,基于两个阶段框架的方法在此任务上实现了最新的现有性能。该框架利用了自我监督的表示学习算法来训练Inlier数据上的特征提取器,并在要素空间中应用一个简单的异常值检测器。在本文中,我们探讨了避免为每个异常检测任务培训不同表示的高成本的可能性,而是使用单个预训练网络作为通用特征提取器,无论域数据的源如何。特别是,我们通过一个网络预先培训的网络替换任务特定的特征提取器,其具有自我监督的损失。在实验中,与前两级方法相比,我们在各种异常检测基准上展示了竞争或更好的性能,表明来自域数据中的学习表示可能是不必要的,因为异常值检测可能是不必要的。

High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network
Authors Jie Liang, Hui Zeng, Lei Zhang
图像转换的现有图像I2IT方法是由于其繁重的高分辨率特征映射的繁重计算负担而被约束到低分辨率图像或长度推理时间。在本文中,我们专注于加快基于封闭式Laplacian金字塔分解和重建的高分辨率光电态I2IT任务。具体地,我们揭示了诸如照明和颜色操纵的属性转换,涉及低频分量,而内容细节可以在高频分量上自适应地改进。因此,我们提出了一个Laplacian金字塔翻译网络LPTN,同时执行这两个任务,在那里我们设计了一种轻量级网络,用于将低频分量转换为降低的分辨率和渐进式掩蔽策略,以有效地优化高频。我们的模型避免了处理高分辨率的大部分繁重的计算功能映射,并忠实地保留图像细节。各种任务的广泛实验结果表明,所提出的方法可以使用一个正常GPU实时翻译4K图像,同时实现针对现有方法的可比变换性能。数据集和代码可用

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency
Authors Jie Liang, Hui Zeng, Miaomiao Cui, Xuansong Xie, Lei Zhang
与一般照片修饰任务不同,肖像照片修饰PPR,旨在提高平面看起来的肖像照片集合的视觉质量,具有其特殊和实用的要求,如人类区域优先HRP和组级一致性GLC。 HRP要求应对人类区域支付更多的关注,而GLC则要求绘制一组肖像照片以保持一致的语气。然而,在现有的一般照片修饰数据集上培训的型号几乎不能满足PPR的这些要求。为了促进这项高频任务的研究,我们构建了一个大规模的PPR数据集,即PPR10K,这是我们最佳知识的第一个。 PPR10K总共包含1,681组和11,161个高质量的原始肖像照片。提供人类区域的高分辨率分割面部。每个Raw照片由三位专家刷新,而他们精心调整每组照片以具有一致的色调。我们定义了一套客观措施来评估PPR的表现,并提出了学习PPR模型的策略,具有良好的HRP和GLC性能。构建的PPR10K数据集提供了用于研究自动PPR方法的良好基准,实验表明,所提出的学习策略是有效改善修饰性能。数据集和代码可用

Generalizable Person Re-identification with Relevance-aware Mixture of Experts
Authors Yongxing Dai, Xiaotong Li, Jun Liu, Zekun Tong, Ling Yu Duan
域概括的DG人物RE IDITE REID是一个具有挑战性的问题,因为我们无法在培训期间访问任何未经看的目标域数据。几乎所有现有的DG REID方法都遵循相同的管道,其中他们使用来自多个源域的混合数据集进行培训,然后直接将训练模型应用于未经检验的目标域进行测试。这些方法通常忽略各个源极域歧视特征及其相关性W.R.T.看不见的目标域,但这两者都可以利用来帮助模型的概括。为了处理上述两个问题,我们提出了一种新的方法,称为专家Ramoe的相关感知混合物,使用有效的基于投票的混合物机制来动态地利用源极域不同特征来改善模型的概率。具体而言,我们提出了一种去相关性损失,使源域网络专家能够保持个体域特征的多样性和可怜的性。此外,我们设计了一个投票网络,可自适应地将所有专家集成到具有域相关性的更广泛的聚合特征中。考虑到培训期间的目标域名,我们提出了一种新颖的学习学习算法与我们的关系对齐损耗相结合以更新投票网络。广泛的实验表明,我们所提出的Ramoe优于现有技术的状态。

XCycles Backprojection Acoustic Super-Resolution
Authors Feras Almasri, Jurgen Vandendriessche, Laurent Segers, Bruno da Silva, An Braeken, Kris Steenhaut, Abdellah Touhafi, Olivier Debeir
计算机愿景群体使用深神经网络DNN的可见图像超分辨率SR的发展得到了很大的关注,并取得了令人印象深刻的结果。非可见光传感器(例如声学成像传感器)的进步引起了很多关注,因为它们允许人们将声波的强度可视化超出可见光谱的声波。然而,由于对获取声学数据的限制,需要提高声学图像分辨率的新方法。此时,没有专为SR问题设计的声学成像数据集。这项工作提出了一种用于声学图像超分辨率问题的新型反投影模型架构,以及声学映射成像Vub数据集AMIVU。 DataSet以不同的分辨率提供大型模拟和真实捕获的图像。与前馈模型方法相比,所提出的XCycles反投影模型XCBP完全使用每个周期中的迭代校正过程来重建低分辨率和高分辨率空间中的编码特征的剩余纠错。在数据集上评估所提出的方法,与经典插值运营商和最近的艺术模型的前馈状态相比,表现出高昂的表现。它还有助于在数据采集期间产生的急剧减少的子采样误差。

Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark Detection in Medical Images
Authors Guang Quan Zhou, Juzheng Miao, Xin Yang, Rui Li, En Ze Huo, Wenlong Shi, Yuhao Huang, Jikuan Qian, Chaoyu Chen, Dong Ni
自动和准确地检测解剖标识是具有多种应用的医学图像分析中的重要操作。最近的深度学习方法通​​过直接编码捕获的解剖学与可能性图中的外观,提高了结果。然而,大多数当前解决方案都忽略了热爱回归的另一个本质,物镜度量来回归目标热插拔并依靠手工制作的启发式来设置目标精度,从而通常繁琐和特定的任务。在本文中,我们提出了一种新颖的学习来学习地标检测框架,同时优化神经网络和目标精度。这项工作的枢轴是利用加强学习RL框架来搜索在训练过程中动态地在训练过程中动态回归多个热手段的客观度量,从而避免了特定的目标精度。我们还介绍了用于参与的RL代理的互动的早期停止策略,以便考虑探索剥削权衡的单独目标的最佳精度。这种方法在推理中培训和提高了本地化精度的更好稳定性。广泛的实验结果对地标本地化的两个不同应用1我们在房屋产前超声US数据集和2个Cephalometric X射线地标检测的公开数据集,展示了我们提出的方法的有效性。我们拟议的框架是一般的,并展示了提高解剖标志性检测效率的潜力。

An Orthogonal Classifier for Improving the Adversarial Robustness of Neural Networks
Authors Cong Xu, Xiang Li, Min Yang
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值