ECCV2018--点云匹配

285 篇文章 55 订阅
185 篇文章 2 订阅
Efficient Global Point Cloud Registration by Matching Rotation Invariant Features Through Translation Search

这篇文章通过解耦平移和选择问题,提出了快速的BnB算法实现全局优化。基于新的旋转不变特征(rotation invariant feature),首先通过快速BnB算法建立全局的3D平移信息,随后利用这一信息计算旋转。
选择不变特征表达如下,对于任何的 S O 3 SO_3 SO3旋转具有不变性:
{ ∣ ∣ R x i 1 ∣ ∣ ∣ ∣ R x i 2 ∣ ∣ ∣ ∣ R ( x i 1 − x i 2 ) ∣ ∣ } = { ∣ ∣ x i 1 ∣ ∣ ∣ ∣ x i 2 ∣ ∣ ∣ ∣ ( x i 1 − x i 2 ) ∣ ∣ } \begin{Bmatrix} ||Rx_{i1}|| \\ ||Rx_{i2}||\\||R(x_{i1}-x_{i2})|| \end{Bmatrix} = \begin{Bmatrix} ||x_{i1}|| \\ ||x_{i2}||\\||(x_{i1}-x_{i2})|| \end{Bmatrix} Rxi1Rxi2R(xi1xi2)=xi1xi2(xi1xi2)
在这里插入图片描述


Learning and Matching Multi-View Descriptors for Registration of Point Clouds

这篇文章提出了一个多视角描述子,通过多视角图图片学习而来用于描述3D关键点。随后提出了一种稳定的匹配方式,通过图形模型的置信度传播实现有效推理,从而排除了局外点的匹配。文章提出了Fuseption-ResNet来实现多视角特征融合:
在这里插入图片描述
随后利用置信度传播来进行匹配,首先匹配的定义如下:
m a x ( r a n k ( p i , p j ) , r a n k ( p j , p i ) ) max(rank(p_i,p_j),rank(p_j,p_i)) max(rank(pi,pj),rank(pj,pi)) m a x ( r a n k ( q i , q j ) , r a n k ( q j , q i ) ) max(rank(q_i,q_j),rank(q_j,q_i)) max(rank(qi,qj),rank(qj,qi))
p和q为对应的点。
随后对信息进行置信度传播:
m i j t + 1 = 1 Z F i j m i ∏ k ∈ ∂ i / j m k i t m_{ij}^{t+1}=\frac{1}{Z}F_{ij}m_i\prod_{k \in \partial{i}/j}m^t_{ki} mijt+1=Z1Fijmiki/jmkit
节点 x i x_i xi边缘分布为:
b i = 1 Z ∏ k ∈ ∂ i m k i b_i=\frac{1}{Z}\prod_{k\in \partial i}m_{ki} bi=Z1kimki
效果如下,在只有少部分重叠的情况下依然有很好的匹配效果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值