Efficient Global Point Cloud Registration by Matching Rotation Invariant Features Through Translation Search
这篇文章通过解耦平移和选择问题,提出了快速的BnB算法实现全局优化。基于新的旋转不变特征(rotation invariant feature),首先通过快速BnB算法建立全局的3D平移信息,随后利用这一信息计算旋转。
选择不变特征表达如下,对于任何的
S
O
3
SO_3
SO3旋转具有不变性:
{
∣
∣
R
x
i
1
∣
∣
∣
∣
R
x
i
2
∣
∣
∣
∣
R
(
x
i
1
−
x
i
2
)
∣
∣
}
=
{
∣
∣
x
i
1
∣
∣
∣
∣
x
i
2
∣
∣
∣
∣
(
x
i
1
−
x
i
2
)
∣
∣
}
\begin{Bmatrix} ||Rx_{i1}|| \\ ||Rx_{i2}||\\||R(x_{i1}-x_{i2})|| \end{Bmatrix} = \begin{Bmatrix} ||x_{i1}|| \\ ||x_{i2}||\\||(x_{i1}-x_{i2})|| \end{Bmatrix}
⎩⎨⎧∣∣Rxi1∣∣∣∣Rxi2∣∣∣∣R(xi1−xi2)∣∣⎭⎬⎫=⎩⎨⎧∣∣xi1∣∣∣∣xi2∣∣∣∣(xi1−xi2)∣∣⎭⎬⎫
Learning and Matching Multi-View Descriptors for Registration of Point Clouds
这篇文章提出了一个多视角描述子,通过多视角图图片学习而来用于描述3D关键点。随后提出了一种稳定的匹配方式,通过图形模型的置信度传播实现有效推理,从而排除了局外点的匹配。文章提出了Fuseption-ResNet来实现多视角特征融合:
随后利用置信度传播来进行匹配,首先匹配的定义如下:
m
a
x
(
r
a
n
k
(
p
i
,
p
j
)
,
r
a
n
k
(
p
j
,
p
i
)
)
max(rank(p_i,p_j),rank(p_j,p_i))
max(rank(pi,pj),rank(pj,pi))
m
a
x
(
r
a
n
k
(
q
i
,
q
j
)
,
r
a
n
k
(
q
j
,
q
i
)
)
max(rank(q_i,q_j),rank(q_j,q_i))
max(rank(qi,qj),rank(qj,qi))
p和q为对应的点。
随后对信息进行置信度传播:
m
i
j
t
+
1
=
1
Z
F
i
j
m
i
∏
k
∈
∂
i
/
j
m
k
i
t
m_{ij}^{t+1}=\frac{1}{Z}F_{ij}m_i\prod_{k \in \partial{i}/j}m^t_{ki}
mijt+1=Z1Fijmik∈∂i/j∏mkit
节点
x
i
x_i
xi边缘分布为:
b
i
=
1
Z
∏
k
∈
∂
i
m
k
i
b_i=\frac{1}{Z}\prod_{k\in \partial i}m_{ki}
bi=Z1k∈∂i∏mki
效果如下,在只有少部分重叠的情况下依然有很好的匹配效果: