POJ 3071 Football(概率DP)

题意:有2^n支队,每次相邻的两支队打比赛,问最后哪支队夺冠的概率最大。

思路:用dp[i][j]表示第i轮第j支队获胜的概率,那么我们可以得到状态转移方程

dp[i][j]=sigma(dp[i-1][j]*dp[i-1][k]*p[j][k]),但要注意到在第i轮j并不是和剩下每个队都可以进行比赛,他只可以和与他左或右相邻的(2^(i-1))支队伍打比赛,那么我们在转移时计算出这个区间就可以了。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

//const int maxn = 100 + 5;
//const int INF = 0x3f3f3f3f;
double p[150][150];
double dp[10][150]; 
int main() {
    //freopen("input.txt", "r", stdin);
	int n;
	while(scanf("%d", &n)==1 && n!=-1) {
		memset(dp, 0, sizeof(dp));
		int tot = 1<<n;
		for(int i = 0; i < tot; i++)
			for(int j = 0; j < tot; j++) scanf("%lf", &p[i][j]);
		for(int i = 0; i < n; i++)	{
			for(int j = 0; j < tot; j++) {
				int pos = j / (1<<i), st, ed;
				if(pos&1) st = (pos-1)*(1<<i); 
				else st = (pos+1)*(1<<i);
				ed = st + (1<<i);
				//if(!i) cout << " " << j << " " << st << " " << ed << endl;
				for(int k = st; k < ed; k++) {
					if(i) dp[i][j] += dp[i-1][j]*dp[i-1][k]*p[j][k];
					else dp[i][j] = p[j][k];
				}
				//cout << i << " " << j << " " << dp[i][j] << endl;
			}
		}
		double ans = 0; int tag;
		for(int i = 0; i < tot; i++) if(ans<dp[n-1][i]) tag = i+1, ans = dp[n-1][i];
		cout << tag << endl;
	}
    return 0;
}


















  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值