Kmeans目标函数原理分析

博客涉及Kmeans相关内容,但具体信息缺失。Kmeans是无监督学习中的聚类算法,在数据挖掘等领域有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### KMeans 聚类分析中的肘部法则 肘部法则用于确定KMeans聚类的最佳簇数量\(k\)。该方法基于误差平方和(Sum of Squared Errors, SSE),定义为各点与其所在簇中心的距离平方之和[^3]。 对于不同的\(k\)值,计算相应的SSE值,并绘制\(k-SSE\)曲线。随着\(k\)增加,SSE逐渐减小;然而,在某个特定的\(k\)之后,继续增大\(k\)带来的SSE减少变得微不足道。这个转折点被称为“肘部”,代表了最佳的簇数目[^5]。 #### 计算公式 设给定数据集\(\{x_1,x_2,\ldots,x_n\}\),其中每个\(x_i \in R^d\)表示一个\(d\)维向量,则第\(j\)个簇内的所有样本到其质心\(c_j\)的距离平方和可以表达为: \[W(C_k)=\sum_{i=1}^{n}(x_i-c_j)^T(x_i-c_j)\] 这里\(C_k=\{x|x\text{属于簇 } j\}\)表示分配至第\(j\)个簇的所有实例集合。总的目标函数即为所有簇内部差异度量的加权平均: \[J(W,C)=\sum_{k=1}^{K} W(C_k)\] 目标是在不同取值范围内找到使上述成本函数最小化的\(k\)值作为最终的选择标准。 为了更直观地展示如何利用肘部法则选择合适的\(k\)值,下面给出一段Python代码示例来模拟这一过程: ```python from sklearn.cluster import KMeans import matplotlib.pyplot as plt def elbow_method(data): distortions = [] K_range = range(1, 10) for k in K_range: kmeanModel = KMeans(n_clusters=k).fit(data) distortions.append(kmeanModel.inertia_) plt.figure(figsize=(8,6)) plt.plot(K_range, distortions, 'bx-') plt.xlabel('Number of clusters (k)') plt.ylabel('Distortion/Inertia') plt.title('The Elbow Method showing the optimal k') plt.show() ``` 这段程序将生成一张图表,显示不同\(k\)下的失真程度或惯性(inertia),从而帮助识别出所谓的“肘部”。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值