导语:
计划写一个大模型赋能智能化测试的合集,分享一下各家先行者的案例,共同学习。目前网上大多数都是泛泛而谈,只是说可以借助大模型自动生成用例、脚本、数据、缺陷诊断等。但是具体怎么用,有哪些坑少有人能说出来,所以借助这个合集来分享些真正有价值的干货。本次拆解案例来自于2024年QECon大会北京站-趣丸科技。
为什么先做功能测试用例生成
这里面具体解释了功能测试用例的特性,以及大模型本身的优势,两者契合度相对于其他测试场景来说更高。
这是借助大模型生成测试用例的大致流程,以及过程中会遇到的难点。在流程上核心环境大致相同:
- 需求设计文档越清晰生成质量越好
- 结合测试人员提供的意见、生成规则、额外需求点等内容
- 整理组合成最终的提示词,交由大模型生成测试用例
技术难点:
- Token限制
- 有效性
(注:这是在去年通用大模型存在的一些欠缺,而随着模型技术发展,进一步支持长文本、推理思考等特性,这些问题都会被更好的解决,例如最近热门的DeepSeek R1)
使用方式:
- 稍有技术能力的公司会追求产品化,而非让测试人员直接与通用大模型对话
- 产品化方式分为两种模式:
- 聊天模式
- 生成模式
(综合对比后,聊天模式更符合现有交互方式。深入设计时,聊天模式可涵盖生成模式,例如首次输出采用固化的生成模式,用户对话后再基于内容调整输出)
聊天模式方案探索
整个方案涉及以下4个核心能力(模型能力提升后仍需产品优化):
- 上下文管理
- 测试领域知识注入
- 意图识别与引导
- 结果校验与修正
实际使用结果不及预期,分析与改进方向:
- 用户习惯倾向于"自动生成",而非主动对话(“能自动生成的就别让我再对话了,大家都懒嘛”)
生成模式方案落地
核心优势:
- 更符合用户"一键生成"的预期
- 减少交互成本
核心能力:
- 文档处理(需求解析与结构化)
- 数据召回(历史用例库匹配)
- 用例创建(提示词工程)
- 用例修改(迭代优化)
- 工程化结合(流程集成)
重点提示词示例:
- 用例创建模板(覆盖正向/异常场景、边界值等)
- 用例修改规则(优先级调整、步骤细化等)
落地效果
- 时效提升:用例生成效率提高60%+
- 采纳率提升:生成用例可直接使用率超75%
- 随着底座大模型能力增强(如长文本支持、多轮推理),效果将持续优化
关注公众号【关于那些的个人观点】,发送消息“智能化测试”,获取完整内容PDF