sklearn(九):Model persistence

本文介绍了如何使用pickle和joblib库来序列化和反序列化scikit-learn中的机器学习模型,包括SVM分类器的实例。通过pickle.dumps()和pickle.loads()函数,模型可以被转换为二进制字符串并从字符串中恢复。然而,对于携带大量numpy数组的模型,joblib的dump和load函数可能更高效,但只能保存到磁盘。
摘要由CSDN通过智能技术生成
#way1  利用pickle.dump()将训练好的分类器序列化(转为二进制),利用 pickle.loads()反序列化;
>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC(gamma='scale')
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)  #存储模型
>>> clf2 = pickle.loads(s)  #下载模型
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

#  In the specific case of scikit-learn, it may be better to use joblib’s replacement of pickle (joblib.dump & joblib.load), which is more efficient on objects that carry large numpy arrays internally as is often the case for fitted scikit-learn estimators, but can only pickle to the disk and not to a string

#way2  joblib.dump()  joblib.load()
>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.joblib')   #存储模型
>>> clf = joblib.load('filename.joblib')   #下载模型

在使用上述函数下载模型时,存在一些security 和 maintainability问题。具体参见:官方文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sarah ฅʕ•̫͡•ʔฅ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值