时间:8月16日 -- 18 日
1. Neural Network: Repressentation 神经网络
Logistic unit, Neural Network, AND、OR、NOT运算
2. Multiple output units: one -vs -all
学习的问题已渐渐显现,讲课能够明白,但做习题已经不能集中精神完全机械的按照提示一步一步来,完全没有理解习题3。
看到做的总结就知道了,没写什么,虽然第四周的课确实不多。
[ml-class] Submitted Assignment 3 - Part 1 - Vectorized Logistic Regression 一定写错了,因为提交时明显迭代次数重复过多,但是不知为什么系统一直说Nice work!。。。。。。。。。。。。。人品好?今晚写这个习题越写越头痛,一定要再做一次!
Programming Exercise 3:
Multi-class Classification and Neural Networks
1 Multi-class Classification
1.3 Vectorizing Logistic Regression
1.3.1 Vectorizing the cost function
1.3.2 Vectorizing the gradient
1.3.3 Vectorizing regularized logistic regression
h = 1 ./ (1 + exp(- X * theta));
J = - (1 / m) * ((y' * log(h)) + (1 - y)' * log(1 - h)) + (lambda / (2 * m)) * sum(theta(2:end) .^ 2);
% 1st
grad = (1 / m) * X' * (h - y) + (lambda / m) * [0;theta(2:end)];
% 2nd
%grad = (1 / m) * X' * (h - y);
%temp = theta;
%temp(1) = 0; % because we don't add anything for j = 0
%grad = grad + (lambda / m) * temp;
总感觉好像是不是这里出问题了?
1.4 One-vs-all Classification
% % Set Initial theta
initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 50);
for c = 1:num_labels
[theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
all_theta(c,:) = theta;
end
1.4.1 One-vs-all Prediction
[x,p] = max(X * all_theta' , [], 2);
2 Neural Networks
2.2 Feedforward Propagation and Prediction
X = [ones(m, 1) X];
X = [ones(m, 1) sigmoid(X * Theta1')];
[x,p] = max(sigmoid(X * Theta2'),[],2);
>> submit
==
== [ml-class] Submitting Solutions | Programming Exercise 3
==
== Select which part(s) to submit:
== 1) Vectorized Logistic Regression [ lrCostFunction.m ]
== 2) One-vs-all classifier training [ oneVsAll.m ]
== 3) One-vs-all classifier prediction [ predictOneVsAll.m ]
== 4) Neural network prediction function [ predict.m ]
== 5) All of the above
==
Enter your choice [1-5]: 5
You are currently logged in as liuyanfight@foxmail.com.
Is this you? (y/n - type n to reenter password)y
== Connecting to ml-class ...
== [ml-class] Submitted Assignment 3 - Part 1 - Vectorized Logistic Regression
== Nice work!
Iteration 1 | Cost: 4.749342e-01
Iteration 2 | Cost: 3.951798e-01
Iteration 3 | Cost: 3.410009e-01
Iteration 4 | Cost: 3.408546e-01
Iteration 5 | Cost: 3.402400e-01
Iteration 6 | Cost: 3.397496e-01
Iteration 7 | Cost: 3.395172e-01
Iteration 8 | Cost: 3.391977e-01
Iteration 9 | Cost: 3.391811e-01
Iteration 10 | Cost: 3.391637e-01
Iteration 11 | Cost: 3.391498e-01
Iteration 12 | Cost: 3.391382e-01
Iteration 13 | Cost: 3.391350e-01
Iteration 14 | Cost: 3.391343e-01
Iteration 15 | Cost: 3.391340e-01
Iteration 16 | Cost: 3.391340e-01
Iteration 17 | Cost: 3.391340e-01
Iteration 18 | Cost: 3.391340e-01
Iteration 19 | Cost: 3.391340e-01
Iteration 20 | Cost: 3.391340e-01
Iteration 21 | Cost: 3.391340e-01
Iteration 22 | Cost: 3.391340e-01
Iteration 23 | Cost: 3.391340e-01
Iteration 24 | Cost: 3.391340e-01
Iteration 25 | Cost: 3.391340e-01
Iteration 26 | Cost: 3.391340e-01
Iteration 27 | Cost: 3.391340e-01
Iteration 28 | Cost: 3.391340e-01
Iteration 29 | Cost: 3.391340e-01
Iteration 30 | Cost: 3.391340e-01
Iteration 31 | Cost: 3.391340e-01
Iteration 32 | Cost: 3.391340e-01
Iteration 34 | Cost: 3.391340e-01
Iteration 1 | Cost: 1.934937e-01
Iteration 2 | Cost: 1.557194e-01
Iteration 3 | Cost: 1.037875e-01
Iteration 4 | Cost: 7.802805e-02
Iteration 5 | Cost: 6.676458e-02
Iteration 6 | Cost: 6.647775e-02
Iteration 7 | Cost: 6.637033e-02
Iteration 8 | Cost: 6.631655e-02
Iteration 9 | Cost: 6.631456e-02
Iteration 10 | Cost: 6.631440e-02
Iteration 11 | Cost: 6.631439e-02
Iteration 12 | Cost: 6.631438e-02
Iteration 13 | Cost: 6.631438e-02
Iteration 14 | Cost: 6.631438e-02
Iteration 15 | Cost: 6.631438e-02
Iteration 16 | Cost: 6.631438e-02
Iteration 17 | Cost: 6.631438e-02
Iteration 18 | Cost: 6.631438e-02
Iteration 19 | Cost: 6.631438e-02
Iteration 20 | Cost: 6.631438e-02
Iteration 21 | Cost: 6.631438e-02
Iteration 22 | Cost: 6.631438e-02
Iteration 23 | Cost: 6.631438e-02
Iteration 24 | Cost: 6.631438e-02
Iteration 25 | Cost: 6.631438e-02
Iteration 26 | Cost: 6.631438e-02
Iteration 1 | Cost: 3.899941e-01
Iteration 2 | Cost: 3.371335e-01
Iteration 3 | Cost: 2.080753e-01
Iteration 4 | Cost: 1.142276e-01
Iteration 5 | Cost: 1.139130e-01
Iteration 6 | Cost: 1.095794e-01
Iteration 7 | Cost: 1.012910e-01
Iteration 8 | Cost: 1.003343e-01
Iteration 9 | Cost: 1.002875e-01
Iteration 10 | Cost: 1.002708e-01
Iteration 11 | Cost: 1.002660e-01
Iteration 12 | Cost: 1.002639e-01
Iteration 13 | Cost: 1.002636e-01
Iteration 14 | Cost: 1.002636e-01
Iteration 15 | Cost: 1.002636e-01
Iteration 16 | Cost: 1.002636e-01
Iteration 17 | Cost: 1.002636e-01
Iteration 18 | Cost: 1.002636e-01
Iteration 19 | Cost: 1.002636e-01
Iteration 20 | Cost: 1.002636e-01
Iteration 21 | Cost: 1.002636e-01
Iteration 22 | Cost: 1.002636e-01
Iteration 23 | Cost: 1.002636e-01
Iteration 24 | Cost: 1.002636e-01
Iteration 25 | Cost: 1.002636e-01
Iteration 26 | Cost: 1.002636e-01
Iteration 27 | Cost: 1.002636e-01
Iteration 28 | Cost: 1.002636e-01
Iteration 29 | Cost: 1.002636e-01
Iteration 30 | Cost: 1.002636e-01
Iteration 31 | Cost: 1.002636e-01
Iteration 1 | Cost: 4.202132e-01
Iteration 2 | Cost: 3.970889e-01
Iteration 3 | Cost: 3.673914e-01
Iteration 4 | Cost: 3.642254e-01
Iteration 5 | Cost: 3.611087e-01
Iteration 6 | Cost: 3.598573e-01
Iteration 7 | Cost: 3.598359e-01
Iteration 8 | Cost: 3.598130e-01
Iteration 9 | Cost: 3.598122e-01
Iteration 10 | Cost: 3.598119e-01
Iteration 11 | Cost: 3.598119e-01
Iteration 12 | Cost: 3.598119e-01
Iteration 13 | Cost: 3.598119e-01
Iteration 14 | Cost: 3.598119e-01
Iteration 15 | Cost: 3.598119e-01
Iteration 16 | Cost: 3.598119e-01
== [ml-class] Submitted Assignment 3 - Part 2 - One-vs-all classifier training
== Nice work!
== [ml-class] Submitted Assignment 3 - Part 3 - One-vs-all classifier prediction
== Nice work!
== [ml-class] Submitted Assignment 3 - Part 4 - Neural network prediction function
== You must wait 4 minutes and 7 seconds before you can submit your solutions again.