「AI工程论」AI的透明性(Transparent)及一种多因素评估方法

本文探讨了AI模型透明性的重要性,指出模型的性能受数据、算法选择、训练过程等因素影响。不可解释的算法、训练数据集的透明度不足、数据选择方法的不透明、对训练数据集偏差的理解有限以及模型版本化的有限可见性是当前面临的主要问题。为了解决这些问题,文章提出了一个多因素透明度评估方法,包括算法可解释性、训练数据透明度、数据选择方法的透明度、对数据集偏差的理解和模型版本化的可见性。透明度评估旨在提高模型的信任度,促进AI领域的健康发展。
摘要由CSDN通过智能技术生成

注:决策智能与机器学习,深耕AI脱水干货

让人工智能发挥作用的一个基石是机器学习——机器从经验和数据中学习,并随着学习而不断提高的能力。事实上,机器学习的研究和应用的爆炸式增长使得人工智能成为了最近的兴趣、投资和应用热点。从根本上说,机器学习就是给机器大量的数据来学习,然后使用复杂的算法,从学习中归纳出机器从未见过的数据。在这种情况下,机器学习算法是教会机器如何学习的配方,而机器学习模型是这种学习的输出,然后可以归纳为新的数据。

不管用来创建机器学习模型的算法是什么,有一个基本事实:机器学习模型的好坏取决于它的数据。错误的数据导致错误的模型。在许多情况下,这些糟糕的模型很容易被发现,因为它们表现不佳。例如,如果你建立了一个机器学习模型来在图像中识别猫,而这个模型将蝴蝶识别为猫,或者不能在图像中识别出明显的猫,我们就知道这个模型有问题。

一个模型表现不佳的原因有很多。输入数据可能会被错误弄得千疮百孔,或者清理得很差。模型的各种设置和配置(超参数)可能设置不当,导致不符合标准的结果。或者,数据科学家和ML工程师在训练模型时,可能会选择具有某种固有偏差的可用数据子集,从而导致模型结果的扭曲。可能是模型训练不够,或者存在过拟合或不拟合导致结果不佳的问题。事实上,一个模型在很多方面都可能不符合标准。

现在,如果我们建立了一个面部识别模型,而不是cat分类模型,我们将这个模型用于安全目的。如果模型识别错了个体,是由于模型配置不当、模型训练不足、输入数据错误,还是我们首先选择了一个有偏差的集合来训练模型?如果我们要依赖这个模型,我们怎么能相信这个模型知道有这么多失败的方法?

透明度的问题

在一个典型的应用程序开发项目中,我们有质量保证(QA)和测试过程、工具和技术,它们可以快速地发现任何错误或偏离已建立的编程规范。我们可以通过回归测试来运行我们的应用程序,以确保新的补丁和修复程序不会造成更多的问题,并且我们可以通过不断地将它们与日益复杂的系统和应用程序功能组合集成在一起来不断地测试我们的功能。

但是在机器学习模型中,我们遇到了一些困难。它们本身并不是代码,因为我们不能通过检查代码来找出错误在哪里。如果我们一开始就知道学习应该如何进行,那么我们就不需要用数据来训练它了,对吗?我们只需从头开始编写模型并完成它。然而,机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值