Embedding Projector

Embedding Projector是一款embedding可视化工具,可通过PCA、T-sne等降维算法将原始数据降维到三维空间。用户导入tsv格式数据即可可视化,可借助pandas将array保存为tsv格式。进入其网页,点击load导入数据,还能选择特定参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    Embedding Projector 是一款embedding 可视化化的工具,通过特定的降维算法如PCA,T-sne将原始数据降维到三维空间,我只需要导入我们的数据就可以可视化,非常方便,当然,你也可以使用sklearn中的tsne和PCA+matplotlib的方式来做embedding可视化,只不过有点麻烦。

embedding projector 可以很方便的导入我们需要的数据,他需要数据格式是tsv格式,tsv和csv的主要区别就是分隔符,csv的分隔符是,(逗号),tsv的分隔符是\t,那么怎样将一个array保存成tsv格式呢,我们可以借助pandas这个工具。代码如下:

import numpy as np
import pandas as pd
b=np.random.normal(0,1,size=(100,20))
b=pd.DataFrame(b)
with open("route.tsv", 'w') as write_tsv:
    write_tsv.write(b.to_csv(sep='\t', index=False,header=False))

header=False,主要是去除列的名字,然后我们就可以进入Embedding projector这个网页了http://projector.tensorflow.org/

点击load就可以导入我们自己的数据了,

 

第一个choose file就是导入我们刚才保存的那个embedding tsv文件,第二个文件可有可无,主要是用来做标记的。 这样我们就可以得到我们自定义的embedding三维可视图了

当然,我们也可以选择特定的参数,如降维算法的选择,学习率的设置等 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值