第三讲:LORA模型训练-10分钟掌握模型训练素材图片的要求

本节课程我们将正式开始讲解Lora模型训练相关知识。

1、确定Lora模型的训练类型和目标

首先,我们要确定好Lora模型的训练是人物、物品、画风中的哪种类型,通过确定类型,去搜集相关的图片素材。

比如,你要训练真人Lora模型,那么你就要保证你的数据集中是真人素材图,如果是要训练二次元,那么就要保证数据集是二次元素材图。如果再细分一下,你训练某个真实人物的Lora模型,那么就要保证数据集中所有图片都是这个统一脸型的人物素材图(比如我们之前的图例JayChou的Lora模型)。如果人物脸型不统一,是很多个不同人物的素材图,那么就转为画风训练。

我们最终的目标是要实现训练出的Lora模型具有很高的调用性和泛化性。

调用性是指,当我们给出Lora模型的调用指令时,它能够积极的响应并反馈回带有明显Lora模型特征的图片。泛化性是指,当我们给出不同的提示词进行构图创作时,它能够灵活的并更加贴切的展示我们所需要的提示词内容,而不是只会局限性的反馈回某个或某几个构图场景或元素。

对于泛化性,我们可以通过下面两个概念更好的去理解:过拟合和欠拟合。

# 过拟合

原素材图

过拟合示例图

理想示例图

过拟合,通俗的讲,就是太像而又太局限性了。过于追求完美的还原度而造成的一种训练结果。它可能很好的做到了对原物一定程度的还原,但是又失去了灵活性。比如,当你需要将一个人的黑头发通过提示词的更改变成红头发,但是它依然只会给出你一张黑头发的人物图片,不会懂得变通,这就属于一种过拟合的现象。

#欠拟合

原素材图

欠拟合示例图

理想效果示例图

欠拟合,通俗的讲,就是太灵活,发挥太自由了。举个最简单的例子,就是当你训练出一个苹果的欠拟合Lora模型后,通过提示词的调用,它可能会给出一张橘子或者梨的图片,虽然长得像苹果的形状,但是它不是苹果。这就属于一种欠拟合的现象。

因此,我们需要一些手段,去寻求一个比较均衡的点,去控制避免这种现象,来达到一种比较好的泛化性效果。既可以尽量提高还原度,还能够灵活的展现不同效果的图片。

1、Lora模型训练所需的数据集

数据集包括训练所使用的图片素材和对应的Tag标签提示词文本(txt格式)

l 关于图片素材,需要注意的重点知识(敲黑板,记笔记!):

2.1图片素材格式

图片素材是jpg或png格式,不必全是正方形图片,可以是任意符合训练需求的尺寸,不要相信网上说的Lora模型训练需要保证素材图是正方形(其实是Embedding嵌入式模型和Hypernetwork超网络模型训练需要保证宽高1:1的尺寸比例数据集),老师做过很多Lora模型训练,没有必须统一为正方形,反而提高了最终成品模型的泛化性(当然,泛化性是否优良还依赖图片素材、标签词、学习率等参数设置,后续会讲到),对各种尺寸和构图场景的出图效果起到了积极的作用。

2.2图片素材质量

尽可能使用无水印无文字的高清大图(起码要200Kb以上),图片最短宽度或高度尽可能不低于512px像素,一般建议素材图尺寸控制在512px-1024px,这个和你的设备性能也有关系,如果你的设备性能一般,那就可以选择最低512px,如果你的设备性能好一些,那可以选择768px或者更大的尺寸数值。这样,模型才能更好地学习图片中的内容素材。特别是做定制人物Lora模型训练的时候,宁缺毋滥,我们宁愿让模型多学习几个轮次的好图,也不要为了累积数据集的素材数量,让它去学习一轮的坏图。

总之一句话,切记:图片质量优先级高于图片数量!

2.3 图片素材要保证主体无遮挡,内容特征齐全,色调风格适配

2.3.1关于人物Lora模型训练:

模型机器只会学习它所看到的内容,比如要训练的人物戴着一副墨镜(或者头发遮住了眼睛),在你不告知它是一副墨镜的情况下(涉及Tag标签处理,后续内容会讲到),模型就会认为这幅墨镜也是这个人脸的一个器官,从而直接学习到最终的模型中去,那么最终的模型出图有可能只会出带着墨镜的人物图像,失去了泛化性。因此,在选择图片时,要尽量选择主体特征无遮挡和内容特征齐全的素材图。如果确实找不到相符的素材图而又想增加数据集的素材量,那么可以将此类遮挡特征书写到Tag标签文本中作为强调说明,让模型学习过程中知道它是遮挡主体的某些特征,这样就可以减少或者避免模型的错误学习,从而突出主体特征。

2.3.2关于画风Lora模型训练:

要尽可能保证素材图的风格一致性。比如想要训练素描风格类型的Lora模型,那就搜集和素描相关的素材图和提示词,整理到训练数据集中,如果想要训练某个艺术家风格类型的Lora模型(比如之前介绍的天野喜孝的画风图例),那就搜集这个艺术家的作品集和提示词进行整理。如果想要训练某些色彩色调、风景元素类型的Lora模型,那就搜集色调风格尽量统一适配的素材图和提示词进行整理。

下期课程第四讲预告:LORA模型训练-Tag标签处理,精准解析图片元素icon-default.png?t=N7T8https://huke88.com/course/161695.html

第四讲至第十二讲改为视频讲解链接地址:

SD-LORA模型训练及SDXL-lora模型训练基础加进阶教程​huke88.com/course/161695.html?pageType=8&key=lora%E6%A8%A1%E5%9E%8B%E8%AE%AD%E7%BB%83&identify=1704508682&ab=1​编辑icon-default.png?t=N7T8https://huke88.com/course/161695.html

课程第11讲和第12讲完结篇之后:会直接赠送大家7大助力模型训练大礼包+2000G模型包

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值