题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入输出格式
输入格式:第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:一行一个数字,表示到公司的最少秒数。
输入输出样例
说明
【样例解释】
1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。
【数据范围】
50%的数据满足最优解路径长度<=1000;
100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
const int inf = 0x3f3f3f3f;
int n, m;
bool can[maxn][maxn][35];
int cost[maxn][maxn];
void floyd()
{
for (int f = 1; f <= 32; f++)
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (can[i][k][f - 1] && can[k][j][f - 1])
{
can[i][j][f] = 1;
cost[i][j] = 1;
}
}
int main()
{
scanf("%d %d", &n, &m);
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
cost[i][j] = inf;
for (int i = 1; i <= m; i++)
{
int a, b;
scanf("%d %d", &a, &b);
can[a][b][0] = 1;
cost[a][b] = 1;
}
floyd();
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cost[i][j] = min(cost[i][j], cost[i][k] + cost[k][j]);
printf("%d\n", cost[1][n]);
}