[倍增/Floyd] 跑路 洛谷P1613

题目描述

小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入输出格式

输入格式:

第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式:

一行一个数字,表示到公司的最少秒数。

输入输出样例

输入样例#1:  复制
4 4
1 1
1 2
2 3
3 4
输出样例#1:  复制
1

说明

【样例解释】

1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路径长度<=1000;

100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。



#include <bits/stdc++.h>
using namespace std;

const int maxn = 55;
const int inf = 0x3f3f3f3f;

int n, m;
bool can[maxn][maxn][35];
int cost[maxn][maxn];

void floyd()
{
	for (int f = 1; f <= 32; f++)
		for (int k = 1; k <= n; k++)
			for (int i = 1; i <= n; i++)
				for (int j = 1; j <= n; j++)
					if (can[i][k][f - 1] && can[k][j][f - 1])
					{
						can[i][j][f] = 1;
						cost[i][j] = 1;
					}
}

int main()
{
	scanf("%d %d", &n, &m);

	for (int i = 0; i <= n; i++)
		for (int j = 0; j <= n; j++)
			cost[i][j] = inf;
			
	for (int i = 1; i <= m; i++)
	{
		int a, b;
		scanf("%d %d", &a, &b);
		can[a][b][0] = 1;
		cost[a][b] = 1;
	}
	
	floyd();

	for (int k = 1; k <= n; k++)
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				cost[i][j] = min(cost[i][j], cost[i][k] + cost[k][j]);

	printf("%d\n", cost[1][n]);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值