以下是一些优秀且高效的 指令范式(Prompt Patterns),适用于与AI(如ChatGPT等)交互时提升输出质量。这些范式基于清晰的结构化指令,能帮助AI更准确地理解需求并生成高质量结果:
1. 角色设定范式
适用场景:需要AI扮演特定角色(专家、助手、创作者等)时。
模板:
“你是一名[角色,如资深软件工程师/历史学家/编剧],请以[专业领域]的角度,完成以下任务:[具体任务]。要求:[详细要求]。”
示例:
“你是一名资深营养师,请为一名糖尿病患者设计一份一周的低碳水化合物食谱,要求包含早餐、午餐、晚餐,并标注每餐的热量和营养成分。”
2. 分步思考范式(Chain-of-Thought)
适用场景:复杂问题或需要逻辑推导的任务。
模板:
“请逐步分析以下问题:[问题]。分步骤解释你的思考过程,最后给出结论。”
示例:
“如何降低公司的运营成本?请分步骤列出可能的策略,并分析每种策略的利弊。”
3. 示例引导范式(Few-Shot Prompting)
适用场景:需要AI模仿特定风格或格式时。
模板:
“以下是几个示例:[示例1][示例2]。请根据这些示例的风格/格式,完成:[新任务]。”
示例:
“示例1:将‘我喜欢苹果’改写为正式商务邮件用语:‘本人对苹果产品颇为青睐’。
示例2:将‘快点回复我’改写为:‘烦请尽快回复为盼’。
请将‘这个项目很重要’改写为正式商务用语。”
4. 反向提问范式
适用场景:当需求不明确时,引导AI主动澄清。
模板:
“为了更好地回答这个问题,你需要我提供哪些额外信息?请列出关键问题。”
示例:
“我想写一篇关于人工智能的科普文章,但不确定方向。你认为哪些信息是必须明确的?”
5. 限制条件范式
适用场景:限制输出范围(如字数、格式、排除内容)。
模板:
“请用[字数/语言/格式]回答,避免提及[限制内容],重点包括[关键点]。”
示例:
“用100字以内解释量子计算,避免使用数学公式,重点说明其应用场景。”
6. 多角度分析范式
适用场景:需要全面权衡利弊或多视角讨论的问题。
模板:
“请从[角度1]、[角度2]、[角度3]分析[问题],最后给出综合建议。”
示例:
“从经济、环境、社会三个角度分析电动汽车的普及影响。”
7. 错误修正范式
适用场景:检查或优化已有内容时。
模板:
“请检查以下内容是否存在[逻辑/语法/数据]错误,并提出改进建议:[内容]。”
示例:
“请检查这段Python代码是否有语法错误,并优化其效率:[代码片段]。”
8. 创意生成范式
适用场景:需要发散性思维(如起名、故事创作)。
模板:
“请生成[数量]个[创意类型],要求符合[条件],风格参考[描述]。”
示例:
“生成5个科幻小说标题,要求包含‘时间旅行’元素,风格接近《三体》。”
9. 优先级排序范式
适用场景:需要AI对选项或任务排序。
模板:
“根据[标准],将以下选项按优先级排序:[选项列表],并说明理由。”
示例:
“根据学习效率,将‘阅读、实践、讨论、教学’四种学习方法排序,并解释原因。”
10. 总结提炼范式
适用场景:长文本或复杂信息的摘要。
模板:
“用[字数]总结以下内容,保留核心观点和关键数据:[文本]。”
示例:
“用50字总结这篇关于气候变化的文章:[文章链接/文本]。”
使用技巧
- 明确性:避免模糊词汇,如“一些”“可能”,改用具体数字或范围。
- 迭代优化:根据AI的初次回答调整指令,逐步细化需求。
- 组合使用:混合多个范式(如角色设定+分步思考)。
通过结构化指令,能显著提升AI的输出质量和效率。根据实际场景选择或调整范式即可!